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ABSTRACT

In this paper we implement a method that combines finite
element analysis and artificial intelligence (AI) to study
how the choice of some design and material parameters
affects the vibroacoustic response of an archtop guitar.
More specifically, we build a dataset varying the geometry
(thickness profile of the top plate) and the material prop-
erties of the archtop guitar in a parametric fashion. This
dataset is the input for a finite element analysis estimating
the bridge admittances, directivity and the emitted sound
pressure level. An AI-based approach is used to pre-
dict the correspondence between geometric and material
properties and the modal response. We demonstrate that
machine learning is effective in predicting the mechano-
acoustic behavior thus representing an inexpensive alter-
native with respect to finite element simulations.

Keywords: musical acoustics, FEM, machine learning,
archtop guitar

1. INTRODUCTION

The numerical simulation of musical instruments is prob-
ably one of the fastest paced areas in contemporary musi-
cal acoustics. Modern modelling software, together with
laser or computer tomography scans, allow for faithful
digital reproductions of actual instruments with an ex-
cellent match in the vibrational properties of experiment
and model (for a review, see [1]). However, the acoustic
properties, as well as the sound of the instrument, are not
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directly obtainable from the vibrational properties alone.
Furthermore, these accurate models are computationally
expensive to evaluate and difficult to create in the first
place, making them inaccessible for the average instru-
ment maker.

In this context, using artificial intelligence (AI) to pre-
dict the acoustic behaviour of the digital model appears as
a great opportunity to simplify the workflow [2–4]. Not
only is it orders of magnitude faster than traditional FEM
simulations, but once trained, the AI can be deployed in
easy-to-use applications that do not require large compu-
tational power nor specialised knowledge from the user
to be run. This consideration is reinforced by the fact
that current CPUs for mobile devices are equipped with
powerful computational units dedicated to artificial intel-
ligence, thus removing the need of standard PCs for the
use of such applications.

The prediction of the sound pressure level (SPL) of
the instrument is a much more relevant descriptor than
merely its vibrational frequencies. It is this quantity to-
gether with the mobility that one needs when one com-
putes the sound synthesis of the instrument [5–7]. In
terms of computation power it requires much more com-
plex simulations than just the structural vibration, as is
usually done in the literature, but gives a far more nuanced
idea of how the instrument will actually sound. Having an
AI that can accurately predict the SPL could completely
transform the way we do acoustic studies of musical in-
struments. This is what we aim for in the following arti-
cle.

The archtop guitar is an excellent test case to develop
such methodology. It is a relatively simple instrument,
without complicated bracing as the classical or western
guitar, and its outline and arching are easy to describe with
only a few parameters, in contrast to the violin family in-
struments whose geometry is far more complex. We hope
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this article brings more attention to an instrument that has
been rather ignored by the musical acoustic community,
and to the best of our knowledge, has only be studied in
three articles [8–10].

2. METHODOLOGY

2.1 Geometric modelling

We realized the 3D model of the guitar body using Au-
todesk Fusion 360. We took the dimensions of a Gibson
L-5 body, while the arching profile of the top and back
plates was obtained from a scan of the upper surface of
the top plate of a real archtop guitar. To model the top
plate we first define the upper surface, starting from the
outline and then proceeding with the arching, mimicking
the one obtained from the 3D scan using one longitudinal
rail and six transversal arches, see Fig. 1. The fit of the
rails to the scanned surface is done by eye.

Figure 1. Upper surface: Central longitudinal rail
(green line), 6 transversal rails (blue lines), outline
profile (light blue curve). Lower Surface: Central
longitudinal rail (red line), 7 transversal rails (orange
lines), flat surface inner profile (purple curve), profile
modification to accommodate for endblocks (black
lines).

Then we modelled the lower surface through the defi-
nition of a flat area for the surface close to the outline and
an inner arched one. The flat surface is needed for gluing
the plate to the sides, linings and endblocks. We define
this portion of the lower surface by creating a copy of the
outline of the plate and then by offsetting it normally in-
ward, as represented by the purple line in Fig. 1.

We then define a longitudinal rail and 7 transversal
ones which are used to control the arching of the inner
surface. The transversal rails are defined as splines having
two control points, one on the longitudinal rail and one on

the inner edge of the flat surface. We use these rails to
control the arching of the inner part of the lower surface
of the top plate. Finally, we build the arched portion of the
lower surface using the “surface patch” tool on the rails.

To create the different top thickness models we first
define the lower surface to obtain a reference plate which
has thickness of 6 mm. This is possible only in the inner
portion of the plate where the thickness is controlled by
the arching of the lower surface. We have no possibility to
control the thickness of the outer portion where we have
the flat lower surface, except for the external perimeter
where we can set the distance between the outline of the
upper and lower surface. Once the reference top plate has
been built, we assign a set of parameters to the rails that
control the arching of the lower surface, obtaining a model
with parametrical control of the thickness. Note that this
particular model does not have a re-curve near the edge.

For the braces, the position of the face facing the bot-
tom plate is fixed along the Z axis while the face that cre-
ates the contact area with the lower surface of the top plate
depends on its arching. This leads to have an increase in
the height of the braces in correspondence with the lower-
ing of the thickness of the top plate and viceversa.

Finally, we build the sides, the endblocks, the linings,
and we define the back plate by mirroring the top plate
with reference thickness.

Figure 2. 3D model of the Archtop guitar body.
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2.2 FEM simulations

Our FEM simulations are based on our previous stud-
ies [2, 3, 10–12] with added complexity implied by the air
volume inside and outside the body of the instrument, both
defined through FEM and applying spherical wave radia-
tion boundary on the external air domain. We already im-
plemented the air in [12] but in that case the external air
was modeled through Boundary Element Method (BEM).

The 3D models have been extracted from Fusion360
and imported into Comsol as .sat files. Through the us-
age of this kind of file extension Comsol is able to rec-
ognize each individual component of the body indepen-
dently. Once imported, we assigned a local coordinate
system to every component of the body, which has made it
possible to define the wood grain direction for each com-
ponent separately. In the material section we have de-
fined the wood species as orthotropic materials, assign-
ing to them the mechanical parameters from Table 1. No-
tice that the material modelled here for the top plate is
solid wood, as the actual guitar example, and not bent or
pressed. The only exception to the aforementioned pro-
cedure has been the definition of the material used for the
sides and the linings. Luthiers shape the sides through the
heating and bending of thin wood plates. For this reason
it is not possible to define the grain direction through a
linear coordinate system. Indeed the wood fibers now fol-
low the outline of the guitar body and no straight direction
can be determined. The choice has then been to define a
third material just for the sides and the linings. We have
defined this material as an isotropic approximation of Red
Maple. Preliminary experiments have shown that, while
this approximation simplifies and solves the problem of
grain orientation for the sides, it implies a very small de-
viation from the actual behaviour.

For the air domain, we define 2 separate regions: in-
side and outside the body. The separation between the
two regions has been achieved using the cap faces tool in
Comsol design, which generated two surfaces closing the
soundholes on the top surface of the soundboard. At first
we have generated a volume enclosing the guitar body. We
then used the guitar body as a splitting tool to divide the
volume into two domain, keeping only the one internal to
the guitar.

To define the external air, we have generated a 30 cm
radius sphere, centred in the middle of the guitar body,
and then we have defined the domain by removing from
the sphere both the guitar structure domains and the inner
air domain.

Table 1. Mechanical properties of the wood used in
the model and simulation, taken from [13].

Density [kg m-3]
Engelmann Spruce 350

Red Maple 540
Young’s Moduli [GPa]

EL ER ET

Engelmann Spruce 9.79 1.25 0.58
Red Maple 12.43 1.74 0.83

Shear Moduli [GPa]
GLR GRT GLT

Engelmann Spruce 1.21 0.10 1.17
Red Maple 1.65 0.30 0.92

Poissons’s Ratios
νLR νRT νLT

Engelmann Spruce 0.422 0.53 0.462
Red Maple 0.434 0.762 0.509

We assigned the two air domains to the ”Pressure
Acoustics, Frequency Domain” interface, which belongs
to the Acoustics Module. This interface applies FEM to
the acoustic problem. We applied a spherical wave ra-
diation boundary condition on the surface of the sphere
to model the effect of the propagation outside of the mod-
elled portion of space. Preliminary experiments confirmed
that the model spherical wave radiation does not introduce
artifacts to the sound pressure level, especially in terms of
reflections coming back from the boundaries of the air do-
main.

At last we have assigned the built-in Air material to
the two air domains and meshed them using free tetrahe-
dral elements.

For each guitar body simulated we have conducted
two different studies: first, the eigenfrequencies of the
whole system have been computed. Then, taking only the
first 5 eigenfrequencies, we compute the amplitude of the
mobility at the bridge position, when exciting the guitar
at the location of the treble foot of the bridge, and of the
sound pressure level at a point 20cm above the center of
the top plate. Computing the complete SPL as a function
of frequency is only computationally more expensive but
conceptually the same as this, we thus leave that study for
a future work.
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Figure 3. Architecture of the NN used to predict the frequency and amplitude. We have used a one hidden
layer neural network with dimension 13 in the input, 17 neurons in the hidden layer, and 15 dimensions for the
output. The activation function for the hidden layer is an Elliot sigmoid, whereas for the output layer is a linear
function.

2.3 Dataset generation

The dataset is generated by random sampling the material
parameter space with a gaussian distribution centred in the
nominal values of the material parameters for spruce. We
assume that each parameter is independent, which may
not be a realistic assumption considering that in nature
there is a slight correlation between the density of the
wood and other mechanical parameters [14].

The center values of the material parameters cor-
respond to the nominal elastic constants of Engelmann
spruce as reported in Table 1. The center value of the
density is set to ρ0 = 350 [Kg m−3]. There is only one
geometrical parameter that controls the thickness of the
plate, and is varied discontinuously between +2mm and -
2mm maximum thickness variation of the top plate, vary-
ing the control parameter in steps of 5% increments. The
standard deviation of the Gaussian random variables δY
is σM = 0.25 for the elastic parameters, σρ = 0.1 for
the density. It’s worth noticing that these parameters for
the random sampling generate a distribution of material
parameters far larger than the one actually found in in-
strument making. In particular, the maximum stiffness is
more than 3 times the minimum stiffness, whereas in ex-
periments the range is found to be just twice [15].

We model the damping of the plate by means of the
Rayleigh damping model [16] and set its two control pa-
rameters α = 0 [s−1] and β = 2 × 106[s]. Despite not
being very realistic, it is a model commonly used in the
literature [1].

At the end of the whole process, we obtain a dataset
of 270 occurrences with 13 inputs (i.e. 9 elastic con-
stants, one geometry parameter, the density and the 2,
fixed, damping parameters) and 10 outputs. The outputs
are the frequency/mobility/SPL triplets corresponding to

the first 5 eigenfrequencies.

2.4 AI architecture and training

In order to predict the eigenfrequency fs, the mobility am-
plitude ms and the Sound Pressure Level SPLs, we em-
ploy a Single-layer Feedforward Neural Networks [17].
We choose to employ these networks since they are reck-
oned to be universal approximators of general mappings
from one finite dimensional space to another [18].

The Matlab® Machine Learning Toolbox NNTRAIN-
TOOL [19, 20] is used to implement and train the MFNN
following the Levemberg-Marquadt algorithm [21]. We
have used a one hidden layer neural network with dimen-
sion 13 in the input, 17 neurons in the hidden layer, and 15
dimensions for the output. The activation function for the
hidden layer is an Elliot sigmoid, whereas for the output
layer is a linear function.

To train and test the neural network, we randomly
split the dataset into train set and test set containing the
90% and the 10% of the total occurrences, respectively.

3. RESULTS

Figure 4 shows two examples of the dependence of the fre-
quency and amplitude of the mobility’s first peak for dif-
ferent longitudinal stiffnesses. The data is obtained from
the complete dataset and has values of stiffness ranging
from 3 GPa to 19 GPa, randomly sampled according to
the distribution described in section 2. The range of fre-
quencies in which the first peak varies is quite significant,
going from the low 170Hz up to 190Hz. The amplitude
of the peak shows a variation of almost 20dB, showing
how relevant the variation in material parameters is for
the sound production of the instrument. From the scatter
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Figure 4. Frequency (left) and amplitude (right) of the first peak as a function of the longitudinal stiffness of
the top plate for 270 simulations.

plots it is clear that there is a negative correlation between
the frequency and the amplitude of the first peak: higher is
the frequency, lower is the amplitude. It is worth noticing
that the variation in stiffness is far larger than the one re-
ported experimentally [15] so if the NN is able to predict
in this dataset the results should be valid as well in real
instruments.

Figure 5 shows the predicted versus actual values for
the frequency, mobility amplitude, and SPL evaluated in
the test set. The mean coefficient of determination, R2,
for the 15 variables is < R2 >≃ 0.93. As it can be seen
from the data, the fit is almost perfect for the frequency
R2

f = 0.96, slightly worse for the mobility R2
m = 0.95

(in particular mode 4). and rather poorly for the SPL with
an R2

s = 0.86. The mode with the maximum error, the
third mode, is a very low R2

s3 = 0.76.
If one thinks of sound in terms of the propagation of

a surface field in a 3D space [22] the larger error in the
prediction of the SPL is not surprising. The pressure in
one point of the space is the integral of the propagated
contributions of each point on the surface of the guitar.
Thus, learning the SPL is equivalent to somehow learning
the mobility for each point of the instrument. Obviously, a
network that has enough expressivity to learn the mobility
at one point of the instrument without overfitting, won’t be
able to accurately learn all the points of the instrument. It
stands to reason then that to learn the SPL in an accurate
manner a more complex architecture and more data are
required.

To study this dependence in the complexity of the net-
work we trained different architectures (both increasing

the layers and splitting the prediction per physical quan-
tity), but the results were all worse than the one presented
here due to overfitting. In the future we will augment the
dataset to avoid this issue and find a better performing net-
work.

A final mention of the speed up is worth making here:
the FEM simulation first needs to compute the eigenfre-
quencies and then the admittance and SPL at those fre-
quencies to compute the amplitudes. In total this takes
about five minutes. When using the AI the computation
only takes 0.05 s, which results in a speed up of 6000X
once the training has been done, which in our case took 2
days of continuous computation.

4. CONCLUSIONS

In this article we have shown that a NN can accurately
predict the frequency and amplitude of the first five peaks
in the mobility response of a full 3D model of an arch-
top guitar. The ground truth results are obtained from a
multiphysics simulation involving the structure of the in-
strument as well as the air volume in and around it.

Despite the simplicity of the NN, the prediction is ex-
tremely fast and accurate for both the frequency of the
peaks and the mobility amplitude. After the training is
done, evaluating the NN has practically a zero computa-
tional cost, allowing for the fast prediction of different de-
signs and materials and their influence in the sound of the
instrument. This could be easily implemented in a way
that is easy to use for instrument makers.

We have also looked into the prediction of the sound

2969



10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

1

2

3

4

5

150 200 250 300 350 400 450
150

200

250

300

350

400

450

Actual Frequency [Hz]

P
re
di
ct
ed
F
re
q
[H
z]

1

2

3

4

5

-50 -40 -30 -20 -10 0
-50

-40

-30

-20

-10

0

Actual Mobility [dB]

P
re
di
ct
ed
M
ob

[d
B
]

1

2

3

4

5

10 15 20 25 30 35 40
0

10

20

30

40

Actual SPL [dB]

P
re
di
ct
ed
S
P
L
[d
B
]

Figure 5. Predicted versus actual eigenfrequencies, mobility and SPL for the test dataset for each of the modes,
labeled from 1 to 5 in the legend.

pressure level with less accurate, but reasonably good, re-
sults. The fact that the error in the prediction increases as
we try to predict more complex observables is expected.
From our previous research [4] we know that for the sim-
pler case of a rectangular plate, different architectures are
optimal for the prediction of the frequency and the am-
plitude of the peaks in the mobility simulations, the net-
work needed for the amplitudes is of a larger complexity
than the one needed for the frequency. It stands to reason
that predicting the SPL requires an even more complex
architecture since the results are a propagation of the mo-
bility in the whole surface of the instrument, not in a sin-
gle point. Doing a complete hyperparameters optimisation
goes far beyond the scope of this paper but is a promising
research question that we are currently investigating.

One surprising result is that the complexity of the net-
work needed to predict the frequencies and amplitudes of
the mobility for the complete guitar is less than for ”sim-
pler” systems such as the plates already mentioned [4].
The reason for this is that by isolating the effect of the
top plate, and coupling it with a guitar body of fixed ge-
ometry and materials, we are actually reducing the impact
that the top plate has on the complete instrument [12]. We
speculate that a complete variation of the materials of the
instrument would require a more complex architecture yet
it would be conceptually equivalent.

For the sake of simplicity, we have focused in this
article only in the frequency and amplitude of the re-
sponse. Current artificial sound synthesis model require
the full modal characterisation, that is, also the damping
for each peak. We are confident that this algorithm will
work as well with the prediction of the complete SPL (or
a modal approximation of it) and could be used to — in
real time — hear the sound of a virtual instrument. This is
another step in that direction.
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