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Victor Wetzel1
1 STMS laboratory (IRCAM-CNRS-SU), Paris, France

2 Aix Marseille Univ, CNRS, Centrale Marseille, LMA UMR 7031, Marseille, France

ABSTRACT

In this work, we propose a power-balanced model of
the full vocal apparatus, described by passive elementary
components, the connection of which accounts for fluid-
solid and fluid-fluid interactions.
In the larynx, we consider a potential incompressible flow
of an inviscid fluid between parallel moving walls whose
dynamics is reduced to a mass-spring-damper oscillator
equipped with an elastic cover. The vocal tract is rep-
resented by a macroscopic lumped parameter model de-
rived for the irrotational flow of a compressible inviscid
fluid with the simplest kinematics satisfying the boundary
conditions.
The assembly of elements admits a representation as a
constrained global port-Hamiltonian system for which we
propose simulations based on a projection method that
preserves the power balance. Several numerical experi-
ments show the ability of the model to reproduce a variety
of regimes according to different configurations: non os-
cillating regimes (no phonation), periodic regimes (typi-
cal of healthy voice) and non-periodic oscillating regimes
(typical of dysphonia). These simulations are used to
sketch first cartographies of regimes with respect to con-
trol parameters.

Keywords: Physical modelling, Vocal apparatus, Port-
Hamiltonian Systems, Lumped parameter models

*Corresponding author: thomas.risse@ircam.fr.
Copyright: ©2023 Risse et al. This is an open-access article
distributed under the terms of the Creative Commons Attribu-
tion 3.0 Unported License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original
author and source are credited.

1. INTRODUCTION

Physical modelling of the vocal apparatus has a long his-
tory, based on low or high dimensional descriptions. For
the larynx, the first family includes lumped-parameters
models such as the reference two-mass model presented
in [1]. It accounts for a one-dimensional glottal flow cou-
pled to two pairs of mass-spring-damper systems repre-
senting trapezoidal vocal folds, the flow dynamics be-
ing governed by a Bernoulli equation. Extensions to re-
fined shapes and structures are also available in e.g. [2–4].
However, such Bernoulli-based modelling does not repre-
sent balanced power exchanges between the glottal flow
and the vocal folds.

The second family based on e.g. finite element meth-
ods and coupled fluid-structure interactions (FSI) solvers
is computationally highly demanding (see e.g. [5] and [6]
for 2D and 3D problems, or the European project EUNI-
SON).

This work is twofold and aims to: develop a lumped-
parameter model of a full vocal apparatus that accounts for
balanced power exchanges between the glottal flow and
the vocal folds; provide a power-balanced simulation that
requires a relatively low computational cost. In order to do
so, we use the port-Hamiltonian framework by assembling
models from Refs. [7] and [8] (see also [9]).

This paper is organised as follows. Section 2 presents
a brief reminder on Port-Hamiltonian systems and detail
the modelling of the larynx, the vocal tract and their as-
sembly. Section 3 presents the power-balanced numerical
method. and section 4 the numerical experiments, before
conclusions and perspectives in section 5.
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2. MODELLING

2.1 Reminder on Port Hamiltonian Systems

We propose here a short presentation of port-Hamiltonian
systems (PHS), introduced in [10]. The port-Hamiltonian
framework is an extension of classical autonomous and
conservative Hamiltonian mechanics to the cases where
internal dissipation of energy and power exchanges with
the environment can occur. Their advantages for the rep-
resentation of multi-physical problems include a natural
fulfilment of the power balance, taking into account power
exchanges between passive components, hence leading to
globally passive systems. We are also particularly inter-
ested in the workflow provided by the framework which
consists of modelling subsystems separately and connect-
ing them through their interacting port.

We here use the following class of PHS:
ẋ
w
0
y


︸︷︷︸

f

= S


∇H(x)
z(w, x)

λ
u


︸ ︷︷ ︸

e

, with S = −S⊺, (1)

where x ∈ RNx is the state of the system, H : RNx → R
is the Hamiltonian (positive definite energy function), w ∈
RNw denotes flow variables associated with instantaneous
effort laws z : RNx+Nw → RNw satisfying z(w, x)⊺w ≥
0, λ ∈ RNλ denotes Lagrange multipliers relative to con-
straints on efforts, y ∈ RNext and u ∈ RNext are respec-
tively the outputs and inputs of the system.

The efforts e ∈ E = RN and flows f ∈ F = RN

define the bond variables (e, f) ∈ B = E × F equipped
with the pairing ⟨e|f⟩B = e⊺f ∈ R. Detailing variables
in e and f (see (1)), this pairing defines a global power as

⟨e|f⟩B = ∇H(x)⊺ ẋ
Stored power

+ z(w, x)⊺ w
Dissipated power

+ u⊺ y.
Exchanged power

(2)

Note that constraints do not produce work as their power
is λ⊺ 0 = 0 in the pairing.

The skew-symmetry of the interconnection matrix S
that links e and f in (1) and characterize the structure of
the physical system guarantees the power balance, since
⟨e|f⟩B = ⟨e|Se⟩B = e⊺Se = 0.

This matrix is associated with the so-called Dirac
structure which gathers compatible efforts and flows:

S = {(f, e) ∈ F , E|f = Se}. (3)

For our models, this matrix will have the following
structure:

S =


Sxx Sxw Sxλ Sxu

−S⊺
xw 0 0 Swu

−S⊺
xλ 0 0 Sλu

−S⊺
xu −S⊺

wu −S⊺
λu 0

 . (4)

The next sections are devoted to the description of the
two components of our model of the vocal apparatus.

2.2 Larynx

For the larynx, we use a simplified model presented in [7].
It considers a potential incompressible flow of an inviscid
fluid between parallel moving walls. Those correspond to
the surface of the vocal folds whose dynamics is reduced
to a mass-spring-damper oscillator equipped with an elas-
tic cover.

PsupPsub

mr

ml

Figure 1. Larynx model schematic.

2.2.1 Glottal flow

Figure 2. Glottal flow schematic, from [7].

The domain containing the fluid is represented in
Fig. 2. Denoting h = yl − yr the height of the canal
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and ym = (yr + yl)/2 the middle-line position, the sim-
plest kinematics for the fluid in the domain obeying Euler
equations and satisfying normal velocity continuity on the
walls is given by

v =

[
vx
vy

]
=

[
v0 − x ḣ

h

ẏm + ḣ
h (y − ym)

]
. (5)

In [7], the state vector is xg0 =
[
v0, ẏm, ḣ, h

]
where

v0 and ẏm are the mean axial and transverse velocities, h
the height of the domain and ḣ its time derivative. The
Hamiltonian is then given by

1

2

(
m(h)v20 +m(h)ẏ2m +m3(h)ḣ

2
)
, (6)

where we consider m(h) = 2ρl0Lh(t) the mass of the
fluid and m3(h) = m(h)(1 + 4l20/h

2)/12 the effective
mass for the transverse expansion motion. However, this
choice leads to a state-dependant interconnection matrix,
which complicates the implementation of the numerical
solver. In order to obtain a PHS representation with a
constant interconnection matrix, we here use a change of
variable. After introducing a normalisation height h0, we
define πx = mv0h0/h and πy = mvyh0/h the mean ax-
ial and transverse momenta and πexp = 2m3ḣ the expan-
sion motion momentum from which we can define the new
state vector

xg = [πx, πy, πexp, ḣ]. (7)

The corresponding Hamiltonian is

H(xg) =
h2

2h2
0

π2
x + π2

y

m(h)
+

1

8

π2
exp

m3(h)
. (8)

Using this new set of variable and a couple of instanta-
neous laws modulating the input forces by h0/h, we ob-
tain the following PHS with a constant interconnection
matrix:

π̇x

π̇y

˙πexp

ḣ
wturb ≡ Q+

wg0 ≡ Fl − Fr

wg1 ≡ ∇πyH(x)
−Q−

Q+

−vl
−vr


= Sglottal



∇πx
H(x)

∇πy
H(x)

∇πexp
H(x)

∇hH(x)
zturb(wturb, h)
zg0(wg1, h)
zg1(wg0, h)

P−
tot

P+

Fl

Fr


. (9)

This PHS is controlled by subglottal (upstream)
and supglottal (downstream, after turbulence dissipation
zturb) pressures P−

tot and P+ and by the forces applied by
the left and right vocal folds on the fluid Fl and Fr. The
power conjugated outputs are the volume flows −Q−, Q+

and the speeds −vl and −vr of the vocal fold walls.
The dissipation function

zturb(wturb, h) =
ρ

2

(
wturb

L0h0

)2

Θ(wturb), (10)

with Θ the Heaviside function, represents the loss of en-
ergy due to shear layer vortices at the output of the glottis
where a rapid change of section is observed.

The instantaneous law[
zg0
zg1

]
=

h0

h

[
wg1

−wg0

]
, (11)

corresponds to a gyrator modulating the forces Fl and Fr

in order to keep Sglottal constant, without contribution to
the power balance as ⟨zg(wg, h)|wg⟩ = 0.

Finally, the constitutive block matrices of Sglottal, en-
coding the dynamics, are

Sglottal
xx =


0 0 0 0
0 0 0 0
0 0 0 −2
0 0 2 0

 , (12a)

Sglottal
xw =


−L0h0 0 0

0 0 1
2L0l0 0 0
0 0 0

 , (12b)

Sglottal
xu =


L0h0 0 −L0h0 0
0 0 0 0

2L0l0 2L0l0 −1 −1
0 0 0 0

 , (12c)

Sglottal
wu =

0 0 0 0
0 0 1 −1
0 0 0 0

 . (12d)

2.2.2 Vocal folds

Vocal folds are reduced to mass-spring-damper systems
with a purely elastic cover, as shown in figure 1. The PHS
corresponding to this system is presented in [7] and not
reproduced here for the sake of brevity.
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2.2.3 Complete larynx

Once the models of glottal flow and vocal folds are estab-
lished, they can be connected by means of a PHS connec-
tions procedure, as presented in [11]: the output forces of
the vocal folds models are linked to the input forces Fl

and Fr applied on the glottal flow. The complete larynx
model then admits two input-output pairs:

ularynx =
[
P−
tot, P

+
]⊺

and ylarynx =
[
−Q−, Q+

]⊺
,

(13)
which are respectively the pressures and volume flows at
the entrance and exit of the glottis.

2.3 Vocal tract

We use the vocal tract model developed in [8, chap. 3].
It is a lumped parameter model based on the decomposi-
tion of the complete vocal tract in multiple sub-tracts. The
full tract is then controllable by means of input and out-
put fluid enthalpy and of the velocity of the surrounding
tissues. This allows the reproduction of articulations from
geometric trajectories to produce vowel sounds.

2.3.1 A single sub-tract

x = 0 l0−l0

y = 0

h(t)

SL SR

SB

Sw

ψL

qL

ψR

qR

vw Fw

Ω(t)

Figure 3. Single tract schematic

We consider a time-varying fluid domain, as pre-
sented figure 3. After making the assumption that the fluid
is a compressible perfect gas having an homogeneous den-
sity in the domain Ω(t) and that the flow is irrotational,
one can derive a finite-dimensional representation of the
dynamics, based on a decomposition of the velocity field
in 3 different components:

v(x, y, t) =

[
1
0

]
vmx(t)

Uniform axial

+

[
−x/h(t)
y/h(t)

]
vy(t)

Incompressible

+

[
x/l0
0

]
vc(t)

Compressibility

.

(14)

After some computations presented in [8], Wetzel
showed that the dynamics of this single tract admits a port-
Hamiltonian formulation with canonical interconnection
matrix S (composed of 0, 1 and -1). The state vector for
this PHS is given by

xtract = [νl, νr, πy,m, h]
⊺
, (15)

where νl and νr are axial kinematics variables and πy is
an incompressible transverse motion component. Finally,
m and h are respectively the mass of the fluid contained
in the tract and the height of the tract. The Hamiltonian
associated with these states is given by

Htract(xtract) =
m

2l20
(ν2l + ν2r − νlνr) +

3π2
y

2m

+ P0hSw

[
γ

2

(
ρ(m,h)− ρ0

ρ0

)
− 1

]
,

(16)

where ρ(m,h) = m
Swh is a function reconstructing the

fluid density.
Finally, the structure of the single tract PHS is:



ν̇l
ν̇r
π̇y

ṁ

ḣ
wg0 ≡ ṁ

wg1 ≡ ḣ
0
Ψl

qr
vw


= Stract



∇νl
H(x) ≡ ql

∇νr
H(x) ≡ qr

∇πyH(x) ≡ vw
∇mH(x) ≡ ⟨Ψ⟩Ω

∇hH(x) ≡ −⟨p⟩ΩSw
zg0(wg1, πy,m) := vw

πy

m
zg1(wg0, πy,m) := −πy

m ṁ
λ0 ≡ Ψl

−ql
Ψr

Fw


,

(17)
where < . >Ω is the volume-average operator. Note that
instantaneous laws zg0(wg1, πy,m) and zg1(wg0, πy,m)
form a conservative gyrator. The constitutive block matri-
ces of Stract are:

Stract
xx =


0 0 0 −1 0
0 0 0 1 0
0 0 0 0 −1
1 −1 0 0 0
0 0 1 0 0

 , (18a)

Stract
xw =


−1 0
1 0
0 −1
0 0
0 0

 , (18b)
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Stract
xλ =


−1
0
0
0
0

 , (18c)

Stract
λu =

[
1 0 0

]
, (18d)

Stract
xu =


0 0 0
0 −1 0
0 0 1
0 0 0
0 0 0

 . (18e)

This PHS is then a dissipation free model of the tract,
controlled by left mass flow ql, right enthalpy Ψr and
by the force Fw applied on the wall. Conjugated out-
puts are the left enthalpy Ψl, right mass flow qr and the
speed of the wall vw. In order to have a mass flow control
at the left, a Lagrange multiplier imposing the constraint
−∇νl

H(x) = −ql has been introduced in (17).

2.3.2 Assembly of the vocal tract

Thanks to this Lagrange multiplier, we can now directly
connect 2 tracts by linking the outgoing mass flow of the
leftmost tract (output of the PHS) to the ingoing mass flow
of the rightmost tract (input of the PHS). Repeating this
procedure allows to build a full vocal tract composed of
an arbitrary number of tracts. Then, we connect simple
spring-damper systems to the force inputs for the walls.
This aims to represent the effect of the tissues on the dy-
namics and also provides a control of the walls through
their velocity, which is more natural than the force. Fi-
nally, a simple radiation condition is added at the right-
most tract. Those last points are explained in more details
in [8, chap. 4].

At the end of the assembly, the full vocal tract is con-
trolled by the ingoing input mass flow in the leftmost tract
and by velocities of the walls of each tracts.

2.4 Assembly of the full vocal apparatus

From the larynx model and the vocal tract model, the as-
sembly is straightforward: as the output of the larynx is
the outgoing volume flow Q+ and the input of the vocal
tract is the mass flow ql, the connection is achieved by
Q+/ρ = ql, where ρ is the constant density assumed for
the glottal flow.

3. NUMERICAL METHOD

The numerical method is based on an adaptation of [12,
Chap. 5] to solve a PHS that includes algebraic constraints
formulated as in (3). This adaptation corresponds to a pro-
jection method that:

• produces solutions in the continuous time-domain
(with continuous state and discontinuous effort and
flows),

• preserves the power balance, accurate at order 2,

• is capable to manage constraints.

From the original PHS structure given in (3), we de-
fine a projected structure

SP = {(f, e) ∈ F , E|f = PSe}, (19)

where P : F 7−→ F is a projector over a time inter-
val T. Under the condition that S is skew-symmetric,
the projected structure preserves the passivity, that is:
∀(f, e) ∈ SP , ⟨e|f⟩ = 0. The demonstration is done
in [12] for PHS without constraint but the introduction of
constraints on efforts does not modify it (as their corre-
sponding flows are always 0). By means of writing the so-
lutions using the basis coefficients in some approximation
space, a numerical scheme involving numerical integra-
tion at each time step can be developed as in [12]. For our
application, we use the simplest case where the approxi-
mation space reduces to constants over T, with projector
P projecting to this space.

On a given time interval T, variables are then approx-
imated by:

x(τ) := x0 + hδXτ =⇒ Ẋ(τ) = hδX, (20a)

w(τ) := wapp, (20b)

y(τ) := yapp, (20c)

where x0 is the initial condition (state at τ = 0) and the
subscript app stands for approximation. At each time step,
we solve the projected PHS for the unknowns δX , wapp

and yapp using the Newton-Raphson method.

4. NUMERICAL EXPERIMENTS

For all our numerical experiments, we use a sampling fre-
quency of 44100 Hz and an absolute tolerance of 1e− 10
for the nonlinear systems solutions.
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Configuration C1 C2 C3
Input pressure 200 40 200
amplitude P0 [Pa]
Vocal folds mr = ml = 2e− 4 mr = ml = 2e− 4 mr = 2e− 4, ml = 2.4e− 4
masses mi [kg]
observed regime damped oscillation periodic aperiodic and damped oscillation

Table 1. Parameter sets corresponding to 3 configurations.

4.1 Configurations and regimes

In the following, the assembled model is excited by an
input pressure ramp defined by its amplitude P0, a delay
time tdel and a rise time trise such that:

P (t) =


0 if t < tdel,
t−tdel
trise

P0 if tdel < t < tdel + trise,

P0 if t > tdel + trise.

(21)

For our experiments, we consider a set of fixed parameters
for each sub-systems:

• Vocal folds: folds stiffness ki = 100 N.m−1, cover
stiffness κi = 300 N.m−1, damping ri = 1.3e− 3
kg.s−1, sub-glottal surface Ssub = 11e− 5 m2 and
supra-glottal surface Ssup = 11e− 7 m2.

• Glottal flow: density ρ0 = 1.3 kg.m3, length
2l0 = 4e − 3 m, width L0 = 11e − 3 m, initial
and reference height h0 = hr = 1e− 4 m.

• Vocal tract: number of tracts N = 4, single tract
length 2l0 = 17e− 2/(2 ∗N) m, tract width L0 =
1e − 2 m, initial tract opening htract = 1e − 2
m, tracts opening speed ḣtract = 0 m.s−1, wall
stiffness kw = 845 N.m−3 and wall damping rw =
0.04 kg.s−1.m2.

• Excitation: delay time tdel = 0.005 s and rise time
trise = 0.02 s.

Table 4 gives 3 sets of the complementary parameters giv-
ing rise to 3 different behaviours of the dynamical system.
The glottal opening h is shown in figure 4 for the 3 con-
figurations.

In configuration C1, the vocal folds are symmetric
and the input pressure amplitude is sufficient to induce
self-oscillations of the larynx. After a transient of ap-
proximately 0.2 s, the system follows a stable trajectory
in which the vocal folds are not touching.

Configuration C2 corresponds to a case where the
folds are still symmetrical but the input pressure is low.
After a transient, the system converges to a static equilib-
rium with no oscillations.

In configuration C3, the input pressure amplitude is
the same than in configuration C2, but the vocal folds are
rendered asymmetrical by changing the mass of the left
fold. In that case, the system does not self oscillate but
converges slowly to a static regime.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (s)

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

h 
(m

)

C1
C2
C3

Figure 4. Glottal opening h as a function of time for
3 configurations.

4.2 Cartographies

In order to characterize the parameter sets giving rise to
oscillations, we use a cartography methodology based on
the work done in [13] for a clarinet model. It is based on
the training of a classification algorithm (based on Sup-
port Vector Machines) on data gathered from a number
of simulations. In this work, we propose a simple two-
dimensional cartography of the presented vocal apparatus
on the initial glottis opening hr and on the input pressure
amplitude P0.
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The damping coefficient of the vocal folds is set to
4e−3 kg.s−1 while the other fixed parameters are the same
than presented in part 4.1. Varying parameters hr [m] and
P0[Pa] are generated using latin hypercube sampling on
the intervals 1e − 4 < hr < 1e − 3 and 0 < P0 < 400.
After running the simulation, we use a criterion based on
the envelope of the oscillating signal h (glottis opening) to
determine if there is a self-oscillation. If the amplitude of
the oscillation is greater at the end of the simulation than
just after the transient, we consider that the system is os-
cillating. Otherwise, we fit the envelope of the oscillation
with an equation of type h(t) = aebt + c and compare the
value of c to a criterion value ccrit: if c > ccrit, then we
consider that there is an oscillation.

Figure 5. Cartography of oscillating configurations
w.r.t. the subglottal pressure P0 and the glottal open-
ing hr.

Figure 5 presents the cartography obtained from a
number of simulations. We observe that, for the model
with chosen fixed parameters, oscillations only occur in
a given input pressure range and for a glottal opening at
rest below a given value. This is coherent with the fact
that abduction of the vocal folds is needed for the ap-
parition of oscillations. Nevertheless, it is important to
keep in mind that the lumped parameters values (macro-
scopic constants) are not straightforward to estimate from
the known characteristics of the tissues and that they can
greatly influence the shape of the cartography presented
figure 5.

5. CONCLUSION AND PERSPECTIVES

The main contribution of this paper is the derivation of a
power-balanced simulation of a full vocal apparatus based
on a nonlinear lumped-parameter modelling. The model

involves fluid-structure interaction with physically inter-
pretable power exchanges. It proves capable to produce
self-oscillating regimes, and relevant to characterize such
regimes with respect to the sub-glottal pressure and the
glottal opening at rest.

A straightforward perspective is to use this model to
produce co-articulated sound. In the medium term, further
work will concern some modelling of contacts between
the vocal folds and a refined description of the exterior
domain (fluid loss and acoustic radiation). Another work
will be devoted to study methods in order to reduce the
computational cost.
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