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ABSTRACT

Soundscape, the sonic environment as perceived and un-
derstood by people, is a conglomerate of different sounds.
It has been established that its appraisal by instantaneous
annoyance is not solely determined by its calculated loud-
ness, but also by recognised sounds. Hence, most previous
research on annoyance has focused on single-source envi-
ronments. Audio analytics aims at detecting and classify-
ing sound sources, but does not explore human perception
of these. This paper proposes a dual-input model to simul-
taneously perform sound source classification (SSC) and
human annoyance rating prediction (ARP). The model
takes mel features and root-mean-square value (rms) fea-
tures as input, and uses convolutional blocks to extract
high-level acoustic features. These are used to predict
sound source classes and to estimate the human annoy-
ance rating for the whole fragment. Experiments on the
DeLTA dataset show that: 1) models using mel features
and rms features outperform models using only one of
them; 2) The proposed model achieves a SSC accuracy
of 90.06%, and an ARP (scale 1 to 10) root mean square
error of 1.05.
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1. INTRODUCTION

When environmental sound disturbs instantaneous inten-
tions and activities, it becomes noise and is appraised
as being annoying. This definition of annoyance is to-
day used to explore the long-term effects of environmen-
tal noise through surveys (ISO/TS 15666:2021). In this
context, annoyance is often related to a specific source,
e.g. being annoyed by the sound of X. It is worth not-
ing that annoyance in this context refers to long-term ap-
praisal and therefore is the result of non-focused listening
during other activities. Noticing the sound can be seen as
an important prerequisite for becoming annoyed [1]. Lab
research on annoyance - in this definition - has to care-
fully avoid that participants’ change to a focused listening
style, e.g. by creating an ecologically valid setting [2] [3].

Soundscape research takes a more holistic approach
to perception and understanding of the sonic environment
(ISO 12913-1:2014). The combination of sounds that to-
gether form the sonic environment becomes important.
Appraisal of the soundscape can be done by focused lis-
tening, preferably in context (ISO/TS 12913-2:2018). As
it is well known that the sounds that are heard affect the
appraisal of a soundscape, the standard foresees asking
users of the space about the sounds that they hear. In addi-
tion, perceived affective quality is assessed along 8 dimen-
sions, roughly matching the circumflex model of effect.
One of these dimensions is annoying, and it is precisely
this definition of annoyance that is used in this work.

Sound source classification (SSC) has been used for
audio event recognition [4], acoustic scene classification
[5], and monitoring [6]. In this work, we will augment
it with annoyance rating prediction (ARP), which aims to
predict the overall appraisal of the soundscape along the
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annoyance axis. As both sound recognition and perceived
affective quality are suggested as soundscape descriptors
by the standard, joint prediction of SSC and ARP can help
in the design of a friendly soundscape [7] and the con-
struction of smart cities [8].

In real life, the song of birds in the park usually makes
people feel relaxed, while the horn roar of speeding cars
on the road usually makes people feel annoyed. To accu-
rately identify these diverse audio events, deep learning-
based convolutional neural networks (CNN) [9], convolu-
tional recurrent neural networks (CRNN) [10] and Trans-
former [11] [12] with multi-head attention are proposed to
identify different kinds of real-world audio events, which
are from different sound sources. These SSC-related stud-
ies mostly focus on the category identification of sound
sources. The feeling brought by these sound sources in
the soundscape to humans is ignored. In this paper, we
explore the possibility of simultaneously performing SSC
and ARP tasks based on real-life polyphonic audio clips.

The paper is organized as follows. Section 2 in-
troduces the proposed method. Section 3 describes the
dataset, experimental setup, and analyzes results. Section
4 draws conclusions.

2. METHOD

This section introduces the proposed model: the dual-
input convolutional neural network (DCNN).

For the input of DCNN, since the log mel features
and root-mean-square value (rms) features are used in this
paper, there are two branches of inputs to the proposed
DCNN model. The dual-input model uses four convolu-
tional blocks to extract high-level representations of the
two acoustic features separately. The representations of
mel and rms features generated by the convolution block
are fed to the fusion module to generate the embeddings
of the human annoyance ratings. The embeddings of the
human annoyance ratings will be input into the final an-
noyance rating prediction layer to complete the ARP task.
The embeddings of sound sources are fed into the final
sound source classification layer to complete the SSC task.

3. EXPERIMENTS AND RESULTS

3.1 Dataset, Experiments Setup, and Metric

In this paper, the publicly available DeLTA [13] dataset,
which includes both ground-truth sound source labels and
human annoyance rating scores, is used. Each audio clip

Figure 1: The mel feature and rms feature of the
same input audio clip.

in DeLTA has a clip-level 24-dimensional multi-hot vec-
tor as the sound source label, and an annoyance rating
(continuously from 1 to 10). DeLTA comprises 2890 15-
second binaural audio clips, where the training, valida-
tion, and test sets contain 2081, 231, and 578 audio clips,
respectively. The log-magnitude Mel-filter 64-bank spec-
trogram [14] and frame-level root-mean-square value [15]
are used as the acoustic features in this paper.

For SSC, accuracy (Acc) is used to measure the classi-
fication results. For ARP, root mean square error (RMSE)
is used to evaluate the prediction results.

3.2 Results and Analysis

Two kinds of acoustic features are used in this paper,
Tab. 1 shows the ablation experiments of the two acous-
tic features on the proposed DCNN model to specifically
present the performance of the DCNN model based on dif-
ferent features.

As shown in Tab. 1, the DCNN model performs the
worst on the ARP and SSC tasks when using only the
rms features related to sound loudness. Moreover, its
SSC results are the worst in Tab. 1. As shown in Fig. 1
(b), the dimension of the frame-level rms used in this pa-
per is (T, 1), where T is the number of frames. In other
words, the loudness-related rms can be considered as a

Table 1: Ablation study on the acoustic features.

#
Acoustic feature ARP SSC

mel rms RMSE Acc. (%)
1 " % 1.18 ± 0.12 89.11 ± 1.06
2 % " 1.27 ± 0.10 79.09 ± 2.31
3 " " 1.05 ± 0.13 90.06 ± 1.38
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one-dimensional feature. Compared with the mel features
with a dimension of (T, 64) in Fig. 1 (a), the information
contained in the loudness-related rms is slightly scarce.
These factors make it difficult to distinguish the 24 dif-
ferent types of sound sources from real-life sources in
the DeLTA dataset based only on the rms features alone.
The DCNN using mel features outperforms the results
of its corresponding rms features overall. While DCNN
combining mel and rms features achieves the best results,
which clarifies that using these two acoustic features ben-
efits the model’s performance on SSC and ARP tasks.

4. CONCLUSION

Previous soundscape research based on human listening
tests and questionnaires is often time-consuming and ex-
pensive. This paper explores the feasibility of using the
deep learning-based model to recognize sound sources
and infer human perception within soundscapes without
human questionnaires. The successful identification of
various sound sources in the soundscape and the predic-
tion of human annoyance ratings by the model indicate
that the automatic analysis of soundscapes based on arti-
ficial intelligence deep neural networks is promising.

In detail, this paper extends the environmental sound
source classification (SSC) task with real-life soundscape
annoyance rating prediction (ARP). As soundscape affec-
tive rating relates to the recognition of sounds, both tasks
are intermingled. Hence, to simultaneously perform SSC
and ARP tasks, this paper proposes a dual-branch convo-
lutional neural network (DCNN) using mel features and
rms features. Experimental results on the DeLTA dataset
show that the proposed DCNN using mel features and rms
features outperform models using only one of them, and
the proposed model achieves a SSC accuracy of 90.06%,
and an ARP (scale 1 to 10) root mean square error of
1.05. It should however be noted that the DeLTA dataset
is based on attentive listening to short sound recordings
which may have triggered participants to relate their an-
noyance rating more to the sounds they recognized as they
would have done in an ecologically valid context. This is
expected to make the task of the model easier.
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