
10th Convention of the European Acoustics Association 
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino 

 

 

REINFORCEMENT LEARNING APPLIED TO AN ACTIVE NOISE 
CONTROL SYSTEM IN SONIC CRYSTAL NOISE BARRIERS 

David Ramírez-Solana*1,2 Jaime Galiana-Nieves2 Javier Redondo2 
Agostino Marcello Mangini1  Maria Pia Fanti1  

1 Dipartimento di Ingegneria Elettrica e dell’Informazione, Politecnico di Bari, Via Orabona, 4, 70125, 
Bari, Italia 

2 Instituto de Investigación para la Gestión Integrada de Zonas Costeras, Universitat Politècnica de 
València, C. Paranimf, 1., 46730 Gandia, Spain 

 
 

 
ABSTRACT* 

Noise control is one of the main environmental challenges 
today. Transport noise is often reduced by using noise 
barriers which are problematic due to their lack of 
permeability to water and wind. In recent decades, an 
alternative to conventional noise barriers has been proposed 
based on Sonic Crystals, called Sonic Crystal Noise 
Barriers (SCNB). However, they present another problem 
due to their lack of efficiency at low frequencies. 
On the other hand, cheaper technology in recent years has 
greatly enhanced Active Noise Control (ANC). Protection 
against noise is becoming more and more feasible using this 
type of technology. In contrast to SCNB, active noise 
control is more efficient at low frequencies because the 
sweet point is larger at these frequencies. 
All this leads us to consider the combination of both ideas 
in this numerical approach. The aim is using a 
Reinforcement Learning (RL) architecture with a Double 
Deep Q-Network (DDQN) agent, studying the potential of 
incorporating ANC into these SCNB and produce 
permeable barriers with the best low frequency response 
possible. 
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1. INTRODUCTION 

Sonic crystal noise barriers (SCNB) are a type of noise 
barrier that uses periodic structures to reflect or absorb 
sound waves of specific target frequencies [1]. These 
frequencies can be determined by choosing properly the 
topology of the scatterers or the lattice constant between 
them. They have shown great promise in reducing traffic 
noise pollution with the highlight of being permeable to 
light and wind, but they are often expensive to install and 
maintain. Active noise control (ANC) systems, on the other 
hand, use speakers and microphones to create an opposing 
sound wave that cancels out the incoming sound wave [2]. 
They can be more cost-effective than SCNB, but their 
effectiveness depends on the accuracy of the noise 
prediction model and the control algorithm. 
 
Regarding control algorithms, Reinforcement Learning 
(RL) is a subfield of machine learning that focuses on 
developing algorithms that enable an agent to learn from its 
environment by interacting with it and receiving feedback 
in the form of rewards. RL algorithms such as deep Q-
learning and actor-critic methods have been successfully 
applied to active noise control systems, allowing them to 
adapt to changing noise conditions and achieve better noise 
reduction performance, in particular, in closed spaces [3]. 
However, there are still several challenges to be addressed 
in the application of RL to ANC systems for SCNB. 
 
On one hand, the biggest handicaps of SCNB are:  

• Their poor noise reduction response in low 
frequencies. 

• Most of the studies are made considering normal 
incidence that enhances its insulation in the 
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diffractive frequency range and not considering a 
random incidence. 

• Usually, an incident plane wave is considered as a 
main noise source when the source is far away 
enough. 

On the other hand, ANC has also some drawbacks to 
consider: 

• The main source to cancel used to be fixed and the 
secondary source is placed to obtain a cancellation 
region (sweet point) for specific cases where it is 
desired. 

• Nearly all of approaches are made for indoor 
systems or enclosure cases. 
 

Taking into account the previous considerations, this work 
proposes an RL procedure to find an autonomous ANC 
system for a SCNB, having a Finite Difference Time 
Domain (FDTD) simulation environment with low 
frequencies moving sources and outdoor propagation noise 
case. 

2. METHODOLOGY 

2.1 Main structure of Reinforcement Learning (RL) 

Reinforcement Learning (RL) is a branch of machine 
learning that deals with sequential decision-making and 
takes into account artificial agents that, like biological 
agents, learn by interacting with their environment. The 
artificial agent makes use of its experience to achieve goals 
that are presented as a series of cumulative rewards 
following the scheme of Figure 1. The ability of the agent to 
learn appropriate behaviour, gradually modifying and 
acquiring new skills, and the use of trial-and-error 
experience are the main components of RL. The RL agent 
just has to be able to interact with the environment and 
gather information; it does not need to have comprehensive 
knowledge of or control over the environment [4].  
 

2.1.1  Double Deep Q-Network Algorithm 

The RL architecture chosen is a Double Deep Q-
Network (DDQN) Agent. A model-free technique with 
off-policy based algorithm. In this case, a value-based 
RL agent called a DDQN agent teaches a critic (Q) to 
predict future rewards. Since the action space is discrete
a Q-value function target critic (Qc) is employed to 
improve the stability of the process. The DDQN agent 
takes the latest critic parameter values and updates Qt. 
The agent adjusts the parameters values during training. 

The trained value function approximator is stored in the 
critic Q and the parameters are left at their tuned value 
after training. One issue with the DQN algorithm is that 
it overestimates the true rewards; the Q-values predict a 
bigger reward for the agent than it will really be. The 
DDQN algorithm advise applying a straightforward hack 
to address this: separating the selection of the action 
from the evaluation of the action. During the training 
phase the steps are these ones [5]: 
 

1. Initialise the critic Q(S,A) and target critic 
Qc(S,A) with the same values of parameters 
(,c). Where S are the observations and A the 
actions. 

2. For each episode: 
a. For the initial observation of the 

episode  (St0) select a random action 
with probability  which follows a 
decay function to define as a 
hyperparameter. 

b. Execute action (At) and observe the 
reward (Rt) and the next observation 
(St+1). 

c. Store the experience in a buffer (St, At, 
Rt, St+1). 

d. Set the next action for which the critic 
value function is the biggest. Also set 
the value function target (yt), that can 
be consider the policy-decision 
function of the target critic (Qc):  
 

 
(1) 

 
(2) 

Where  is the discount factor 
an hyperparameter that represents how 
important are the nearest rewards over 
future rewards in perspective. 

e. Update critic parameters (Q) with the 
loss L across all stored experiences: 

 
(3) 

f. Update the target critic (Qc) parameters 
(c) with the hyperparameter called 
“smooth factor” () following: 
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(4) 

g. Update the probability  for the next 
episode. 

h. When St+1 is a terminal observation set 
the value function target yt to Rt, 

 
 

 

Figure 1. RL block diagram of the training 
process 

2.2 Finite Difference Time Domain (FDTD) simulations 

The finite-difference time-domain (FDTD) method is 
possibly one of the simplest full-wave techniques used to 
solve electromagnetics problems, both conceptually and in 
terms of its application. The FDTD method employs finite 
differences as approximations to the spatial and temporal 
derivatives appearing in Maxwell's equations. The 
technique was first proposed by K. Yee [6] in 
electromagnetics.  

 
Maloney and Cummings [7] adapted the method to the field 
of acoustics using the conservation of momentum and 
continuity equations, which are transformed into central 
difference equations, obtaining update formulas for sound 
pressure and particle velocity.  

3. ANC SYSTEM FOR SCNB WITH DDQN 
ARCHITECTURE 

The main purpose of this work is to improve the insulation 
of SCNB in the low frequency range using an ANC system. 
So, the first decision is considering the lowest frequency in 
the  traffic noise spectrum of international standard EN 
1793-3 [8], 100 Hz. At this frequency the SNCB is almost 

transparent, having an insignificant insulation of only 2 or 3 
dB [9]. The noise source will be a car moving at 108 Km/h 
in a highway section of 6 meters. This car is emitting a pure 
tone of 100 Hz. The barrier is placed 1 meter from the path 
of the noise source (car) and the evaluation point and 
secondary source are placed 0.5 meter from the last scatter 
of the SCNB. The SCNB has its main frequency insulation 
band at Bragg frequency = 1 kHz [10] where the traffic 
noise spectrum in dB(A) has more weight. So, the distant 
between scatterers called “lattice constant” is 0.17 m and 
the total width of the barrier is 0.47 m. 
 

 

Figure 2. Scheme of the environment with 
the primary source at the left of the SCNB 

and the ANC system in the right part 

3.1 FDTD Environment 

The FDTD environment is equivalent to the one 
represented in Figure 2 but adding Perfectly Matched 
Layers (PML) at the boundaries to prevent unwanted 
reflections [11].  
In the evaluation point the result of the loudspeaker 
cancellation signal and the car noise is obtained, looking for 
a noise cancellation due to the ANC principle. The FDTD 
simulation is run in a different function that the agent calls 
each time wants to act into the environment. So, this 
environment has either inputs as an agent actions or the 
time duration of the steps, and also outputs as observations. 
With time domain simulations techniques as FDTD is 
possible to interact at each episode easier than with 
frequency-domain simulation techniques. 
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3.2 Observation 

The main purpose of the RL architecture is to improve the 
performance of the SCNB with the ANC. So, assuming the 
insulation produced only by the barrier when the ANC is 
not working as an acoustic pressure level to reduce, this is 
the initial observation of the process. With this initial 
observation, after the actions are executed a second pressure 
is registered and the Insertion Loss of the ANC system 
(ILANC)  is calculated as follows: 

, 
(5) 

where p(t)b is the acoustic noise pressure with only the 
SCNB acting as a noise mitigation device and p(t)ANC the 
acoustic noise pressure obtained after the secondary source 
is emitting a signal to cancel the primary noise. The end of 
each episode is defined by the last time step, with a value of 
200 ms the time that the car needs to pass from the bottom 
to the top of the environment. Following the fast 
mechanism of usual sound meters, that gives a value each 
125 ms, and letting the RL system to modify the action 
during the car is passing  a value of 100 ms for each step is 
defined. 

3.3 Actions  

The actions are discrete, since it is a FDTD simulation 
environment with discrete mesh, as well as a DDQN 
architecture.  Both actions have the goal of produces the 
most suitable signal that can cancel the noise emitted from 
the primary source (car), the first one (action 1) defines the 
amplitude of the source and the second one (action 2) the 
phase of the signal. When the phases of the signals are 
opposed, the acoustic wave is cancelled, and a “sweet 
point” is produced thanks to the ANC main principle.  

The signal of the secondary source (S2), follows the next 
equation: 

, 
(6) 

 

with f = 100 Hz and t a vector of the time that each step of 
the environment takes to evaluate the observation. The time 
vector is defined as 100 ms, ,then the observation is passed 
to the next setp and each episode has 2 steps and 2 different 
actions to interact with the RL environment. So, every car 

passing is considered as an episode where 2 actions can be 
executed with 2 different observation and rewards. 

3.4 Reward 

The agent performs its behaviour at each call to the step 
function (defined as  100 ms) and receives rewards 
regarding on how those actions affect the environment 
according to the observations. The reward can be thought of 
as the environment's feedback, indicating whether the 
agent's activities were successful or unsuccessful. The agent 
needs to modify some parameters of the signal radiated 
from the secondary source, to find the best noise 
cancellation result in the evaluation point. Considering the 
observation previously described in section 3.2, the Reward 
function analyse this ILANC and according to how much is 
improving the insulation is proportionally setting its value: 

, 
(7) 

where there is no reward if the ANC system is augmenting 
the noise pressure level (ILANC)<0, and on the other case the 
exact level of dBs that increase the initial observation  using 
the current observation of the step, according to equation 
(5). By doing this, even if the reward is very small, it will be 
always an improvement with respect not having the ANC 
system and have only the SCNB. 

4. RESULTS 

4.1 Training of the DDQN Agent 

During the training, the DDQN agent updates its critic 
model at each episode. The hyperparameters have been 
chosen according to Table 1. Where  greedy probability 
distribution over the episodes guarantees a wide exploration 
of the parameters over the number of episodes and the 
optimizing hyperparameters are giving more importance to 
the future rewards according to the saving values, as the 
high discount factor (γ) ensures. 

Table 1. Training hyperparameters 

Parameter Value 

Critic Optimizer type adam 
Critic Optimizer learn rate 0.01 
Agent Discount factor ( γ ) 0.99 
Agent Batch size 64 
Agent buffer length 1000 
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Agent smooth factor () 0.001 

Initial epsilon greedy (ini) 1 

Epsilon greedy decay (decay) 0.01 

Minimum epsilon greedy (min) 0.01 
 
In Fig. 3 the training process of the system is represented 
with only 500 episodes, since this study case is very simple 
with only one frequency and only one velocity of the 
moving source. The convergence is found in episode 180 
when the agent is already trained. The cumulative rewards 
of the episode and the average reward are plotted, showing 
a smoothy tendence in the averaged case. Also, the 
maximum cumulative reward is plotted.  
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Figure 3. -Training results of the DDQN
Agent 

Considering that each episode has two steps, and the 
cumulative reward of each episode is the sum of the step’s 
rewards we can assume that the averaged value of  
insulation in dBs could be the half of the episode reward. 
So, taking the two best possible actions, an averaged 
improvement of 5.7 dB can be obtained. 
 

4.2 Deployment of the environment 

After the training, the agent had found the best value of 
actions that satisfy the maximum IL improvement in the 
two steps of each episode. So that is why all the simulations 
run with the DDQN agent have constant values as Fig. 4 
shows. This is the optimal value of the actions to produce 
the bigger noise cancellation at the evaluation point. With 
8.39 dB in the first 100 ms and 3.40 dB in the second 100 
ms. When the agent is not trained, the reward is always 

equal to zero since the secondary source is contributing in 
negative way to mitigate the sound produced by the car. 
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Figure 4. Simulations with the DDQN agent 
without training knowledge (up) and after 

when it is trained (down) 

4.3 ANC Analysis 

The resulting insulation of the SCNB considers both 
phenomena;  SNCB and ANC to mitigate the noise of the 
primary moving source (car). In the next figure, is presented 
the reset function simulation to obtain the insulation 
produced by the SCNB without the ANC system working. 
 

 

Figure 5. FDTD simulation with only the 
primary source emitting. 

When the ANC system is working, the actions modify 
the signal of the secondary source (S2) so one of the best 
cases is represented in Fig. 6 when the first step’s ILANC 
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= 8.39 dB during the first step period (100 ms) is 
obtained. 

 

Figure 6. – FDTD simulation with the 
primary and secondary source emitting 

4.4 Insertion Loss results 

In the introduction it has been said that SCNB are usually 
studied under a normal incidence condition of the noise 
source, but according to the case of this study, a random 
incidence average for the Insertion Loss (IL) following the 
next equation is consider: 

, 

(6) 

where pb(f,) and pi(f,) are the acoustic pressures measured 
after placing the barrier and without placing it respectively, 
for a specific frequency f, and incident angle . The angle 
limit is lim= 85 since according to several studies that said 
that after that angle there is no incident acoustic energy 
arriving to the barrier [12] [13]. Also,  the cos() term 
assures that the contribution of the angles above the limit 
are almost neglectable. In Fig. 4 an example of the IL 
averaged of a SCNB with 3 rows is presented in blue 
colour, further explanation can be found in [14], the barrier 
is analogous to the one employed in this study. The best 
improvement of 5.7 dB is added to the 2.16 dB at 100 Hz, 
resulting in a IL value of 7.86 dB. Another interesting 
frequency to improve would be 271 Hz where the value of 

the IL is almost zero, but the higher the frequency is, the 
worse performance the ANC system has. This is due to the 
reason that the sweet point becomes smaller and more 
difficult to control. 
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Figure 7.  Insertion Loss with random 
incidence average of 3-rows SCNB and the 
ANC improvement at 100 Hz. 

5. CONCLUSION 

One of the highlights of this study is the procedure to train 
an autonomously SCNB active barrier throw a time domain 
simulation as FDTD and with a RL architecture. 
In the low-frequency range, the test evaluates a specific 
case of 100 Hz, the lower frequency that European 
Standards considers. 
Reaching a value of 7.86 dB, bigger than the triple of that 
frequency without the ANC system, an improvement to our 
barrier brings the potential of applying this technique in 
more frequencies and cases. 
 
As future research a LMS algorithm can be applied to 
obtain a better cancellation with the ANC system. Also, 
random frequencies and velocities can be settled to train the 
system in order to make it more reliable to real cases and 
also different car velocities. 
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