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ABSTRACT

Cross-laminated timber (CLT) has experienced significant
growth in popularity due to among others high structural
stiffness and low weight. However, these two properties
lead to potentially poor sound insulation. In order to sup-
press flanking sound, where vibrational energy is trans-
mitted from one wall or floor to another through their
common junction, elastic interlayers are typically em-
ployed, but the potential improvements are not straight-
forward to predict. In the present work, the vibration
reduction index Kij for wave transmission between two
connected elements i and j is predicted based on analyt-
ical wave theory for semi-infinite thin homogeneous or-
thotropic plates. The junctions can be rigid or they can
contain elastic interlayers modeled as distributed springs
or flexible waveguides. The proposed methodology is val-
idated with on-site experiments on a T- junction consisting
of CLT-panels with a resilient interlayer. Static equiva-
lence is used to obtain the model input parameters. The
model predictions are in reasonable agreement with the
experimental results for the entire frequency range, es-
pecially for the flexible interlayer models. The differ-
ences between the equivalent isotropic and orthotropic
plate model predictions remain small.
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1. INTRODUCTION

In flanking sound transmission, vibrational energy is
transmitted from one structural element (e.g. wall or plate)
to another through their common junction. In cross-
laminated timber (CLT) structures this often contributes
significantly to the overall sound transmission between
rooms. This may result in an unsatisfactory acoustic com-
fort level. In order to suppress the transmission of flank-
ing sound, elastic interlayers are sometimes implemented
in structural junctions between walls and/or floors. In this
report, an analytical prediction model for flanking trans-
mission using a wave approach is presented. Section 2
describes the general modeling approach to determine the
transmission coefficients and vibration reduction indices.
In Section 3 this methodology is specified for directly
connected orthotropic plates. Section 4 describes the ex-
pansion of this approach to continuous elastic interlayers.
In Section 5 a validation example of a CLT-structure is
treated.

2. METHODOLOGY

The system of interest is a junction consisting of n
directly connected plates with each an inclination θj
relative to an arbitrary plate for which j = 1. The overall
system is illustrated in Figure 1. The general aim of
the prediction model is to determine the transmission
coefficients τstij between an incident wave type s in
plate i and transmitted wave type t in plate j. This is
the ratio of the power transmitted to a receiver plate j
from the junction to the power impinging on the junction
from the source plate i. This coefficient is required for
calculating engineering quantities such as the vibration
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Figure 1. General plate system.

reduction index Kij . The developments start from a wave
approach framework as introduced in [1]. Each plate is
considered to be a thin homogeneous Kirchhoff-Love
plate [2] with an infinite junction length. The wave
transmission between the plates entails an exchange of
vibrational energy between subsystems of source plate i
and receiver plate j, respectively wave types s and t. In
this assessment, three plane wave types are considered
for each plate: out-of-plane bending waves B, in-plane
fast waves F and in-plane slow waves S. Depending
on the propagation angle ϕ, the latter two types are
a combination of quasi-longitudinal and shear wave
motion. The in-plane and out-of-plane motion are taken
to be completely uncoupled.

An incident plane wave of type s in the source plate i
with a given dependence on the angular frequency ω and
wavenumber kx in the x-direction which is parallel to the
junction, impinges on the junction at an angle ϕi. This
elicits a response in the form of reflected and transmitted
plane waves from the junction to every receiver plate j
for any potential wave type t. Due to the compatibility at
the junction these waves have an imposed dependency on
ω and kx as well. This means the x-component of each
wavenumber is identical for all plates and chosen freely
for the incident wave. Similarly, the amplitude is up to
choice. The angle of incidence ϕi depends on kx with
tan (ϕs

i ) =
ks
y,i

ks
x,i

. Based on this imposed dependency, the
form of the displacements u, v, w and θ on each plate
edge can be derived. The incident, reflected and transmit-
ted waves at the junction will also result in forces per unit
length or tractions fyx, fyy and fyz and a moment myy in

w
v

θ u

y'
z'

x' fyx myy

fyy fyz

Figure 2. Forces and displacements at a plate edge.

every receiver plate. The tractions along with the displace-
ments and rotation at the neutral plane of the plates in the
local coordinate system are illustrated in Figure 2. The
plate edge deformations uj and tractions Fj for a plate
j consist of contributions due to the outgoing transmitted
and reflected waves at the junction uout,j and the incident
wave uinc:

uj = uout,j + uinc, (1)
Fj = Fout,j + Finc. (2)

For any plate other than the source plate there is no inci-
dent wave, so uinc = 0 and Finc = 0. The tractions Fout,j

are related to the edge displacements of the plate uout,j in
the local coordinate system (x′, y′, z′) by a block diagonal
stiffness matrix D ∈ C4x4 consisting of two matrices DIP

and DOOP ∈ C2x2 respectively related to the in-plane (IP)
and out-of-plane (OOP) components. The stiffness matri-
ces are function of the imposed wavenumber kx:

fyx
fyy
fyz
myy


︸ ︷︷ ︸
:=Fout,j

=

[
DIP (kx) 0

0 DOOP (kx)

]
︸ ︷︷ ︸

Dj(kx)


u (y′ = 0)
v (y′ = 0)
w (y′ = 0)
θ (y′ = 0)


︸ ︷︷ ︸

uout,j

.

(3)
In a first step, the stiffness matrices Dj are constructed for
all plates for a given junction displacement and frequency.
Secondly, the tractions Finc due to the incident wave are
determined from the same stiffness relations for a chosen
uinc. Then the force and moment equilibrium and defor-
mation placement compatibility conditions are evaluated
at the junction in the global coordinate system such that

Σn
j=1Djuj = finc where finc = Diuinc − Finc. (4)
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This system is solved for the displacements uj . The edge
displacements of each plate can be determined from the
displacement compatibility conditions of the connected
plate. The incident and transmitted intensity to plate j in
the local y′-direction is subsequently computed from the
tractions and edge deformations of each plate for a given
wave type as in [3, p. 34]:

Iy,j : =
1

2
Re
(
Fju̇

∗
j

)
, (5)

with u̇∗
j the complex conjugate of the time derivative of

the displacement. Finally, the transmission coefficient for
an incident wave of type s in a source plate i and transmit-
ted wave of type t in receiver plate j can be calculated:

τstij (ω, ϕi) :=
Ity,j
Isy,i

. (6)

For practical purposes it is more relevant to use an angle-
independent diffuse transmission coefficient:

τstij (ω) :=
1
2

∫ π/2

0
Ity,jDsw,i (ϕi) dϕi

1
2

∫ π/2

0
Isy,iDtw,i (ϕi) dϕi

, (7)

with a direction-dependent weighting factor Dw (ϕ)
which accounts for the fact that waves in different direc-
tions carry the same energy, so they have different inten-
sity if the group speed is directionally dependent [4, p. 69].
The vibration reduction index Kij of connected elements
i and j follows from the transmission coefficients:

Kij :=
TLBB

ij +TLBB
ji

2
+ 5log

(√
fc,ifc,j

fref

)
, (8)

with
TLBB

ij = −10log
(
τBB
ij

)
, (9)

for a reference frequency fref = 1000Hz and critical fre-
quencies fc,i/j .

3. PLATE MODELS

The procedure described in the previous section is adapted
for undamped orthotropic plates with a constant thickness
t and mass density ρ. The local coordinate system of the
plate is oriented along the principal material directions [5].
There are four independent elastic constants: the Young’s
moduli Ex, Ey, Poisson coefficient νxy and shear modu-
lus Gxy. The other Poisson coefficient follows from the
symmetry condition:

νxyEy = νyxEx. (10)

Isotropic plates are a special case of the orthotropic plate
model with

E = Ex = Ey, ν = νxy = νyx and G =
E

2 (1 + ν)
.

(11)
The deformation of the plate is approximated as a super-
position of in-plane deformation under plane stress condi-
tions for the local x′y′-plane and bending deformation sat-
isfying Kirchhoff’s assumptions with the following gov-
erning equations of motion:

E′
x

∂2u

∂x′2 +Gxy
∂2u

∂y′2
+A

∂2v

∂x′∂y′
= ρ

∂2u

∂t2
, (12)

E′
y

∂2v

∂y′2
+Gxy

∂2v

∂x′2 +A
∂2u

∂x′∂y′
= ρ

∂2v

∂t2
, (13)

Bx
∂4w

∂x′4 + 2Bxy
∂4w

∂x′2∂y′2
+By

∂4w

∂y′4
+ ρt

∂2w

∂t2
= 0,

(14)

with

E′
x :=

Ex

1− νxyνyx
, Bx :=

Ext
3

12 (1− νxyνyx)
, (15)

E′
y :=

Ey

1− νxyνyx
, By :=

Eyt
3

12 (1− νxyνyx)
, (16)

A := νxyE
′
y +Gxy, Bxy := νxyBy + 2

Gxyt
3

12
. (17)

Compatibility at the junction requires the same depen-
dency for the deformations of each plate:

u (x, y, t) = αje
−ikxx

′
e−iktyy

′
eiωt, (18)

The in-plane displacements are assumed to differ only by
an amplitude ratio V of v to u. Substitution of equa-
tion (18) into the equations of motion results in a bi-
quadratic equation for both out-of-plane and in-plane mo-
tion in function of their respective wavenumbers in the
y′-direction kty for a transmitted wave type t. Two solu-
tions of kty for both in-plane and out-of-plane motion are
selected for the condition that transmitted waves decay or
propagate in the positive y′-direction. Similarly, the am-
plitude ratios for two different fast or slow in-plane waves
VF/S are determined. The stiffness matrix D (kx) consists
of decoupled in-plane and out-of-plane components as in
equation (3):

DIP (kx) =

[
D11 D12

D21 D22

]
, (19)
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DOOP (kx) =
By

kB1y − kB2y

[
D33 D34

D43 D44

]
, (20)

with

D11 = Gxyt

(
iVSkFy − iVFkSy

VF − VS

)
, (21)

D12 = Gxyt

(
ikSy − ikFy
VF − VS

− ikx

)
, (22)

D21 = E′
yt

(
VFVS (ikFy − ikSy)

VF − VS

)
− ikxνxy, (23)

D22 = E′
yt

(
iVSkSy − iVFkFy

VF − VS

)
, (24)

D33 = ik3B1ykB2y − ik3B2ykB1y, (25)

D34 =k3B1y − k3B1y + νxy (kB1y − kB2y) k
2
x

+
4Gxy

Ey
(1− νxyνyx) (kB1y − kB2y) k

2
x,

(26)

D43 = k2B1ykB2y − k2B2ykB1y − νxy (kB1y − kB2y) ,

(27)

D44 = ik2B2y − ik2B1y. (28)

The vibration reduction indices are found by applying the
procedure presented in the previous section.

4. INTERLAYER MODELS

In order to suppress flanking transmission sometimes re-
silient strips are employed. These interlayers exert addi-
tional tractions Flay = [Flay,1,Flay,2]

T on both the plate
they are connected to (1) and the junction (2) as in Fig-
ure 3. These tractions are related to the deformations at
the endplanes of the interlayer ulay = [ulay,1,ulay,2]

T by
a stiffness matrix Dlay such that

Flay = Dlayulay. (29)

The force and moment equilibrium is evaluated at both
ends of the interlayer in function of the deformations on
the endfaces of the layer. From these deformations, Kij

can be obtained with the procedure from Section 2. The
interlayer modeling procedure consists of constructing
the interlayer stiffness matrix Dlay. For readibility, the
subscript lay is dropped in further equations. The resilient
interlayer is considered as an isotropic material with an
infinite x′-dimension and finite y′-dimension. Unlike for
the plates, damping is included by means of a complex
Young’s modulus E (1 + iη) with an internal loss factor
η. The position of the layer relative to the junction line is

x'
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z'

x'

y'

z'

InterlayerJunction line
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v2
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Figure 3. Exploded view of the plate/interlayer sys-
tem.

characterized by the offset ey.

In what follows, three candidate interlayer models
are considered. In a first model the interlayer is a thin
isotropic plate. The interlayer stiffness matrix is anal-
ogous to that of the previous section with the exception
that the layer is a waveguide instead of a halfspace, such
that waves can propagate in both the positive and nega-
tive y′-direction. A second model satisfies the assump-
tions from Mees and Vermeir [6]. The in- and out-of-
plane wave motion are also completely uncoupled here.
In order to determine u and v, plane strain conditions are
assumed for the in-plane deformations, which is valid for
strips with a large thickness t compared to the width d and
rigidly attached endplanes. The bending stiffness is con-
sidered negligible such that the out-of-plane deformation
w is purely governed by shear. The cross-sectional rota-
tion θ is taken to be independent from the out-of-plane
translation. It is instead determined by quasi-longitudinal
in-plane wave motion of infinitesimal layers in the z′-
direction which deform independently from each other.
These assumptions lead to the following relations between
tractions and deformations:

fyx =
Et

2 (1 + ν)

(
∂u

∂y′
+

∂v

∂x′

)
, (30)

fyy =
E (1− ν) t

(1 + ν) (1− 2ν)

(
ν

1− ν

∂u

∂x′ +
∂v

∂y′

)
, (31)

fyz =
Et

2 (1 + ν)

∂w

∂y′
, (32)

myy =
Et3 (1− ν)

12 (1 + ν) (1− 2ν)

∂θ

∂y′
. (33)
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Figure 4. Layer geometry of the CLT-panels in the
T-junction. White and grey layers have grain direc-
tions respectively perpendicular and parallel to the
junction. Dimensions are in mm.

In the third model the interlayer is not a waveguide, but a
set of spatially distributed springs along the x′-axis with
no wave propagation in the interlayer in the x′-direction
[6]. The other assumptions of the second model are still
valid. The springs are in static equilibrium which means
the tractions on both ends will be equal in magnitude with
an opposite sign in function of the endplane deformations,
resulting in

fyx =
Et

2 (1 + ν)

u1 − u2

d
, (34)

fyy =
Et (1− ν)

(1 + ν) (1− 2ν)

v1 − v2
d

, (35)

fyz =
Et

2 (1 + ν)

w1 − w2

d
, (36)

myy =
Et3 (1− ν)

12 (1 + ν) (1− 2ν)

θ1 − θ2
d

. (37)

5. APPLICATION

In situ experiments are carried out on a T-junction con-
sisting of cross-laminated timber elements with a resilient
polyurethane foam strip as illustrated in Figure 4. The
experiments are conducted according to the international
standard ISO 10848 [7] with transient hammer excitation
and accelerometer measurements. The timber layers in
the panels are of strength class C24. The nominal timber

Table 1. Equivalent elastic orthotropic constants

Element Ex[MPa] Ey[MPa] G[MPa] νxy[-] νyx[-]
Floor 3561 8877 690 0.019 0.047
Walls 4270 8169 690 0.021 0.040
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Figure 5. Upper wall-lower wall vibration reduction
index for different interlayer models.

material properties are: ρ = 420 kg/m
3, νyx = 0.4541,

Ex = 370MPa, Ey = 12GPa and G = 690MPa, in
which x and y respectively denote the weak and strong
principal direction [8, 9]. The interlayer properties are
E = 3.15MPa, ν = 0.4235, ρ = 585.7 kg/m

3 and
η = 6.81%, as determined by CDM Stravitec. An inter-
layer offset elay,y of the half floor thickness is assumed.
The elastic properties of an equivalent homogeneous
plate are deduced by considering the tractions of the full
equivalent cross-section equal to the sum of the tractions
of each individual layer, assuming the layers are perfectly
glued together. The elastic properties of this equivalent
plate are the model input parameters, as in Table 1. The
vibration reduction index Kij for each transmission
path ij is averaged for the 1/3 octave bands of 50 up to
5000 Hz. Figures 5, 6 and 7 show the predicted values
for the three transmission paths for each interlayer model
alongside the measured values.

It is clear that despite the identical plate models
the predicted results differ greatly due to the varying
nature of the interlayer models. Good estimates for
interlayer material properties and mechanical behavior
are therefore essential to the viability of the predictions as
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Figure 6. Upper wall-floor vibration reduction index
for different interlayer models.

inaccuracies can result in large variations. The thin plate
interlayer model predicts a different overall trend for
Kij than the other approaches and measured values with
the exception of transmission path 2-3 which does not
include the elastic strip. This is not surprising considering
this path can be considered as a rigid L-junction due to
the decoupling from the upper wall by the interlayer in
each prediction. The model errors exceed even 20 dB for
5000 Hz. It can be concluded that this model is not ap-
propriate for the prediction of resilient interlayer behavior.

The shear interlayer model and its simplified version
with springs predict nearly identical results for the low
frequency range up to approximately 200 Hz. The behav-
ior at higher frequencies is different due to the frequency
dependence of the shear interlayer model, resulting in res-
onance and anti-resonance dips or peaks instead of the
steady rise predicted by the spring model. These phenom-
ena occur when

Resonance: dlay =
nλS,lay

2
, (38)

Anti-resonance: dlay = (2n+ 1)
λS,lay

4
, (39)

with λS,lay the shear wavelength of the interlayer and n
a natural number. A shear resonance dip is visible in the
band of 2000 Hz as well as an anti-resonance peak in the
band of 2500 Hz for the transmission paths which include
the resilient strip. Resonances at higher frequencies are
not as clearly visible in a 1/3 octave analysis. This can
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Figure 7. Lower wall-floor vibration reduction index
for different interlayer models.

also be observed in the experimental data, albeit less pro-
nounced than predicted. The transverse bending and shear
impedances of the source plate ZB,i and interlayer ZS,lay

are respectively

ZB,i := ρiticB,i, (40)

ZS,lay :=
Elaytlay

2 (1 + νlay) dlayω
. (41)

for a bending wavespeed in the source plate cB,i. These
impedances match approximately at 125 Hz, resulting in
a local minimum for the vibration reduction [10]. The
measured values do not show this effect.

With the exception of the thin plate interlayer
model, each model has reasonably accurate predictions
in the low- and mid-frequency range up to 1000 Hz
with deviations generally beneath 10 dB. The spring
model overestimates the vibration reduction in the high
frequency range due to the absence of resonances. Sub-
sequently, the shear interlayer model is the most accurate
in this range with deviations generally beneath 10 dB
with the exception of the first resonance dip with an error
of 14.1 dB. For transmission path 1-3, deviations remain
below 5 dB for the entire frequency range. For path 2-3
the predictions are very accurate in the high-frequency
range, but deviate significantly from the measured values
in the low-frequency range. The overall deviation from
the measurements however generally remains beneath
10 dB for every model which is similar to the other
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Figure 8. Upper wall-lower wall vibration reduction
index for a shear interlayer model.

transmission paths.

In a further simplification, the CLT-panels are consid-
ered as isotropic plates with equivalent elastic constants:
E =

√
ExEy and ν =

√
νxyνyx. Figures 8, 9 and 10

show a comparison of these predictions. The predictions
of both isotropic and orthotropic plate models are very
similar for every transmission path with differences
generally below 5 dB. For transmission paths 1-2 and 2-3
these differences are even negligible with the exception
of frequencies above 2000 Hz. This is not surprising
as the equivalent Young’s moduli in Table 1 differ with
a factor less than three, which implies the material is
nearly isotropic with these parameters. There is no
clear indication that either plate model is more accurate
than the other as these models relies heavily on the
assumed equivalent material parameters. It can however
be concluded that an isotropic equivalent model can
deliver sufficiently accurate results for a representative
choice of elastic parameters. This was also observed
by Bosmans et al. for orthotropic L-junctions [5]. The
chosen modeling approach for the resilient layer domi-
nates over the choice between plate isotropy or orthotropy.

The model predictions are based on multiple assump-
tions which can decrease their accuracy. The assumption
of a thin plate is not valid for a wavelength in the same
order of magnitude as the plate thickness or smaller. At
high frequencies, this is often the case for the transmit-
ted bending waves in the CLT-panels. For example, in the
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Figure 9. Upper wall-floor vibration reduction index
for a shear interlayer model.

isotropic equivalent model the wall thickness is a quarter
of its bending wavelength for frequencies above 3500 Hz
while for the floor this is already the case for 2000 Hz. The
assumptions of infinite plate dimensions and diffuse fields
in the plates are also not necessarily valid. It is not clear to
what extent each individual assumption contributes to the
total model error, especially in the case of the interlayer
modeling approaches which can differ greatly. The valid-
ity of the models for varying junction set-ups and material
properties should be evaluated with more extensive test-
ing.

6. CONCLUSION

In this study a prediction model for flanking sound trans-
mission using the wave approach has been described and
validated using experimental results for a CLT structure.
The proposed models provide moderately accurate predic-
tions for the vibration reduction index Kij in the case of
both isotropic and orthotropic plate inputs with an elastic
interlayer. The shear interlayer model is the most accu-
rate representation of resilient strips throughout the en-
tire frequency range from 50 to 5000 Hz while the less
computionally intensive spring model is sufficiently accu-
rate at least in the low and middle frequency range up to
1000 Hz. There is no significant difference between the
orthotropic and isotropic equivalent models for the panels
as long as the equivalent material properties are chosen
carefully. The assumptions made for either the plates or
the interlayer such as the infinite dimensions and thin na-
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Figure 10. Lower wall-floor vibration reduction in-
dex for a shear interlayer model.

ture result in potential inaccuracies. Further confirmation
by additional validation is necessary.
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