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ABSTRACT
Hydroacoustic transducers have been used profusely in
monitoring activities in coastal and oceanic marine envi-
ronments for fishery purposes and the health evaluation
of the seabed and its related biological ecosystems. Accu-
rately predicting its directivity patterns plays a crucial role
in the subsequent numerical simulations of complex ma-
rine environments. The transducers can be quickly char-
acterized experimentally using in-house laboratory equip-
ment where their acoustic response can be obtained from
time-harmonic near-field phaseless data. Obviously, the
extrapolation of those near-field data to predict the time-
harmonic far-field generated pressure cannot be computed
straightforwardly and requires estimating the directivity
pattern associated with the transducer. A hybrid approach
based on the combination of data-driven reconstruction
techniques and an integral representation of the pres-
sure field is analyzed in this work. The accuracy of the
proposed methodology is illustrated in realistic scenarios
with available closed-form solutions such as omnidirec-
tional sources and end-fire arrays. The impact of using
different phase retrieval and quadrature methods is also
quantified numerically.

Keywords: Hydroacoustics, directivity, integral methods,
phaseless data.

1. INTRODUCTION

One of the most widely used indirect procedures to de-
tect fish schools and estimate their biomass in underwa-
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ter environments consists of the measure of the volume
backscattering strength of the reflected pressure field gen-
erated by a hydroacoustic transducer. The transducer in-
sonifies the water column, and reflected echoes coming
from fish schools or the vegetation on the seabed, are
backpropagated to the sea surface and recorded by the
transducer. The strength of the reflected signal is used to
estimate the density and biomass of the fish schools [1,2].

Hydroacoustic transducers must be calibrated to en-
sure accurate pressure field predictions. This calibra-
tion process involves characterizing the directivity pattern
of the hydroacoustic transducer from near-field pressure
measurements [3]. The directivity pattern describes how
efficiently the transducer emits acoustic energy in differ-
ent spatial directions. This information is crucial for accu-
rately reading the reflected signal recorded by the hydroa-
coustic transducer. Directivity patterns can be measured
in a controlled environment such as a laboratory test tank,
where free-field conditions can be reproduced [4]. The
present work is focused on the characterization of the di-
rectivity pattern of a hydroacoustic transducer when only
partial (phaseless) information of the free-field pressure
field is available in the calibration process.

2. MODELLING NEAR-FIELD PRESSURE
GENERATED BY A TRANSDUCER

The mathematical modelling assumptions in underwater
acoustics can be grouped in two different environments
regarding the distance to the origin of the acoustic source:
Far-field data means measurements far from the trans-
ducer at a distance r ≫ λ = c/f (in seawater at 50kHz:
λ ≃ 3cm) or near-field data means measurements close to
the transducer at a distance r ≡ λ.

In the present work, the calibration measurements of
the acoustic transducer have been made at in-house facil-
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ities: r ≃ 10λ implies near-field data. In addition, the
typical size of the active surface of the acoustic transducer
is much smaller than r, which enables us to consider the
following simplification: the acoustic source can be con-
sidered with pointwise support.

In this simple scenario, classical integral methods
(see, e.g. [5]) allow recovering time-harmonic far-field
pressure fields generated from a pointwise-support axis-
symmetric source at a fixed frequency value. If the com-
pressible fluid is assumed dissipative (which is the case
for seawater at the middle and high-frequency regimes),
the pressure field is given by

p(x, y, z) = ik(ω)

∫ π/2−i∞

0

J0 (k(ω)R(x, y) sin (θ))

× e−ik(ω)z cos (θ)Ŝ(θ) sin(θ) dθ, (1)

where ω is the angular frequency, k(ω) = ω/c + iαω2

is the wavenumber, c is the sound speed, α is the vol-
ume dissipation coefficient, J0 is the 0-th order first-kind
Bessel function, Ŝ(θ) is the directivity pattern, R(x, y) =√

x2 + y2, and the real-valued instances of θ represent
the azimuth angle in cylindrical coordinates. In what fol-
lows, the reference values for the seawater in the near-
field measurements predicted in the numerical simula-
tions are given by ω = 100π rad/s, α = 6.4 × 10−16 s,
c = 1430m/s. The pressure field will be measured at a
constant depth z = −0.3m.

Through the rest of this work, the numerical illustra-
tions are made using a directivity pattern generated by a
parametric end-fire array [6], whose function S(θ) can be
computed in closed-form, given by

Ŝ(θ) = Q
1− e−ik(ω)L(1−cos θ)

ik(ω)(1− cos θ)
,

where Q is the volume strength of the source and L is the
array length.

3. NUMERICAL EVALUATION OF THE
INTEGRAL REPRESENTATION

The direct numerical evaluation of the integral (1) requires
of a straightforward change of variable to avoid computa-

tional over floating computations:

p(x, y, z) =

ik(ω)

∫ 1

0

J0

(
k(ω)R(x, y)

√
1− u2

)
e−ik(ω)zuS(u) du

−k(ω)

∫ ∞

0

J0

(
k(ω)R(x, y)

√
1 + t2

)
ek(ω)ztS(it) dt,

(2)

with u = cos θ for θ ∈ [0, π/2] and t = −i cos θ for
θ ∈ [π/2, π/2− i∞).

In the case of the numerical quadrature in the real
path, u ∈ [0, 1], different numerical rules can be
used, such as composite trapezoidal rule, Clenshaw-
Curtis quadrature, Gauss-Legendre quadrature, or Gauss-
Patterson nested rules. In the case of the numerical
quadrature in the imaginary path, t ∈ [0,∞), the Gauss-
Laguerre quadrature or the above-mentioned rules but ap-
plied in a truncated interval [0, T ] with T = 30/(zk(ω)).
These quadrature procedures have been tested in two sim-
ple scenarios where an analytical closed-form solution is
available for the computation of the integral value. In the
case of the real path, the value of∫ 1

0

J1(k(ω)R(x, y)
√

1− u2) du, (3)

has been computed. In the case of the complex path, the
integral

k(ω)

∫ ∞

0

J0(k(ω)R(x, y)t)ek(ω)zt dt, (4)

has been used for testing the quadrature rules. The rela-
tive errors of both real- and imaginary paths are shown in
Figures 1 and 2, respectively. Due to the performance of
the different quadrature rules, in what follows, the Gauss-
Patterson nested rule will be used with order 511 (which
corresponds to the 8th nested index [7]).

4. DISCRETIZATION OF THE NEAR-FIELD
INTEGRAL OPERATOR WITH FULL DATA

The inversion problem consists in how to compute the val-
ues of the directivity pattern in terms of the pressure field
measurements. It requires a discretization of the directiv-
ity profile S(θ). With this purpose, two different alterna-
tives are presented: a classical piecewise linear finite ele-
ment interpolation and a novel enriched strategy based on
the Partition of Unity Finite Element Method (PUFEM)
introduced by Melenk and Babuska [8].
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Figure 1. Relative error of the quadrature rule in (3)
plotted with respect to the number of nodes.

4.1 Finite element (FEM) discretization

The FEM discretization of the directivity pattern is com-
puted on an equispaced mesh Th in the complex-valued
integral path with N = Nre +Nim vertices:

u1, . . . , uNre
∈ [0, 1],

itNre+1, . . . , itNre+Nim
∈ [0, iT ].

Then a piecewise linear FEM approximation of S(u) in
Vh = ⟨{ϕn}Nn=1⟩ is defined

S(u) ≈ Sh(u) =

N∑
n=1

Snϕn(u),

where ϕn|T ∈ P1(C), T ∈ Th. Consequently, the
FEM discretization of pressure at measurement points
1 ≤ m ≤ M are computed as follows

p(xm, ym, zm) =

N∑
n=1

Snk(ω)

(

i

∫ 1

0

J0(k(ω)R(x, y)
√

1− u2)e−ik(ω)zuϕn(u) du

−
∫ T

0

J0(k(ω)R(x, y)
√
1 + t2)e−k(ω)zuϕn(it) dt

)
.

(5)

Hence, in this FEM discretization setting, the inverse
problem with full data (including amplitude and phase

0 100 200 300 400 500
# Quadrature points

10−16

10−13

10−10

10−7

10−4

10−1

102

R
el

at
iv

e
er

ro
r Trapezoidal

Clenshaw-Curtis

Gauss-Legendre

Gauss-Patterson

Gauss-Laguerre

Figure 2. Relative error of the quadrature in (4) rule
plotted with respect to the number of nodes.

in the pressure measurements) can be written as follows:
Given b⃗ ∈ CM the measurements vector, find S⃗h ∈ CN

such that

AS⃗h = b⃗, A ∈ MM×N (C), M > N, (6)

where the matrix coefficients Anm are given by the right-
hand side in (5) and the vector components bm are the
pressure values of the left-hand side in (5). The solution of
the inverse problem (6) has been computed using a least-
square procedure. The numerical results are shown in Fig-
ures 3 and 4. Since the matrix A is ill-conditioned, spu-
rious oscillations arise in the prediction of the directivity
pattern. Moreover, the numerical solution is completely
polluted if dist(Sex, Vh) is not small enough. These inac-
curacies cannot be solved by refining the mesh since the
number of measurement points (which is fixed by the ex-
periment design) cannot be smaller than the dimension of
the FEM discrete space. Hence, the condition M > N is
a requirement in the inverse problem. Hence, potential
standard remedies such as h-refinement or p-refinement
are not allowed.

4.2 Partition of Unity Finite element (PUFEM)
discretization

Taking into account that the FEM basis {ϕn}Nn=1 are a
partition of unity (i.e.

∑N
n=1 ϕn = 1), the piecewise poly-

nomial discrete space Vh = ⟨{ϕn}Nn=1⟩ is enriched with
wave-like functions (see [8] for further details)

wj(u) =
1− eik(ω)Lj

u
, Lj > 0, 1 ≤ j ≤ J.
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Figure 3. Directivity pattern computed solving the
inverse problem with full data using a FEM dis-
cretization, plotted in the real and imaginary path.

Hence, the PUFEM discrete space is defined by Vh =
⟨{wjϕn}J,Nj,n=1⟩. Then a PUFEM approximation of S(u)
belonging to Vh is defined

S(u) ≈ Sh(u) =

J∑
j=1

N∑
n=1

Snwj(u)ϕn(u),

where ϕn|T ∈ P1(C), T ∈ Th. In this manner, the
PUFEM discretization of pressure at measurement points
1 ≤ m ≤ M are computed as follows

p(xm, ym, zm) =

J∑
j=1

N∑
n=1

Snk(ω)

(

i

∫ 1

0

J0(k(ω)R(x, y)
√
1− u2)e−ik(ω)zuwj(u)ϕn(u) du

−
∫ T

0

J0(k(ω)R(x, y)
√
1 + t2)e−k(ω)zuwj(it)ϕn(it) dt

)
.

(7)

The PUFEM discretization leads to an analogous rewrit-
ing of the inverse problem with full data (including ampli-
tude and phase in the pressure measurements) as follows:
Given b⃗ ∈ CM the measurements vector, find S⃗h ∈ CJN

such that
S⃗h = argmin

S⃗∈CJN

||AS⃗ − b⃗||, (8)

where A ∈ MM×JN (C) and it is required M ≥ JN .
Notice that the matrix coefficients Anm are given by the
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Figure 4. Polar plot of directivity pattern computed
solving the inverse problem with full data using a
FEM discretization.

right-hand side in (7) and the vector components bm are
the pressure values of the left-hand side in (7). The solu-
tion of the inverse problem (8) has been computed using a
least-square procedure. The numerical results are shown
in Figures 5 and 6. Once the discrete space has been
enriched with wave-like functions (in this case, only with
one enriched function), the directivity pattern is recovered
accurately by using the full data for the pressure measure-
ments.

5. PHASE-RETRIEVAL STRATEGIES APPLIED
TO THE DIRECTIVITY PATTERN FOR

PHASELESS DATA

If the full information of the pressure measurements is
not available, i.e., the phase of those pressure values is
not recorded, the inverse problem to characterize the di-
rectivity pattern of the transducer becomes a non-linear
problem: Given b⃗ ∈ R+M the measurements vector, find
S⃗h ∈ CJN such that

|AS⃗h| = b⃗, A ∈ MM×JN (C), M ≥ 2JN. (9)

In the present work, three different strategies are used
based on three different kinds of phase retrieval ap-
proaches. First, the fixed-point approach is considered by
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Figure 5. Directivity pattern computed solving the
inverse problem with full data using a PUFEM dis-
cretization, plotted in the real and imaginary path.

using the alternating projection (AP) method [9]. Then,
the feasibility approach has been implemented by means
of the averaged alternating reflections (AAR) method
[10]. Finally, the phase retrieval problem is solved using
non-convex optimization and, in particular, solved using
the non-linear least-square (LS) method [11].

5.1 Fixed point approach

The alternating projection (AP) method is one of the clas-
sical fixed point approaches to solving the non-linear in-
verse problem (9): Given b⃗ ∈ R+M the measurements
vector, from an initial guess S⃗0

h, compute S⃗ k+1
h such that

S⃗ k+1
h = A∗(⃗b⊙ phase(AS⃗ k

h )), k = 0, . . . , Imax,

until a tolerance threshold is satisfied or a maximum num-
ber of iterations Imax is reached. This AP method requires
the Hadarmard product between vectors, denoted by ⊙
and the computation of the phase of each vector compo-
nent, which is inexpensive from a computational point of
view.

This fixed-point approach requires that matrix A must
be unitary. Due to this restriction, the problem (9) is
rewritten using the singular value decomposition (SVD)
A = UΣV∗ as follows: compute Sk+1

h such that

y⃗ k+1
h = U∗(⃗b⊙ phase(U y⃗ k

h )),

Sk+1
h = VΣ−1y⃗ k+1

h , k = 0, . . . , Imax.
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Figure 6. Polar plot of directivity pattern computed
solving the inverse problem with full data using a
PUFEM discretization.

Figure 7 shows the number of iterations required to
reach convergence depending on the Signal-to-Noite ratio
added in the initial guess used to start the AP iterative pro-
cedure. It can be observed that an accurate initialization is
required to limit the number of iterations.

5.2 Feasibility approach

The prototypical example of a feasibility approach con-
sists of the classical Averaged Alternating Reflections
(AAR). If this method is applied to solve the non-linear
inverse problem (9) can be written as follows: Given
b⃗ ∈ R+M the measurements vector,

Find d⃗h ∈ X ∩ Y,

where X = rangeA and Y = {d⃗ ∈ CM : |d⃗| = b⃗}.
To compute iteratively a feasible solution to the problem
above, successive projections into the linear space X and
the set Y must be performed. As in the case of the AP
method, this feasibility approach requires that matrix A
must be unitary. Due to this restriction, the problem (9)
is rewritten using the SVD decomposition A = UΣV∗:
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Figure 7. Number of iterations of the AP method
with respect to the SNR present in the initial guess of
the iterative procedures.

From an initial guess d⃗ 0
h , compute Sk+1

h such that

d⃗ k+1
h =

1

2
d⃗ k
h +

1

2
RXRyd⃗

k
h ,

Sk+1
h = VΣ−1U∗y⃗ k+1

h , k = 0, . . . , Imax,

where

RX d⃗ = 2UU∗d⃗− d⃗,

RY = 2⃗b⊙ phase(d⃗)− d⃗.

Notice that the projections PX and PY onto X and Y ,
respectively, are not written explicitly in the iterative pro-
cedure described above. However, they are involved in
those computations since PX d⃗ = UU∗d⃗ and PY d⃗ =
b⃗⊙ phase(d⃗).

Figure 8 shows the number of iterations required to
reach convergence depending on the Signal-to-Noite ra-
tio added in the initial guess used to start the AP iterative
procedure. It can be observed again that an accurate ini-
tialization is required to limit the number of iterations.

5.3 Non-convex optimization

Finally, a non-convex optimization point of view can be
used to solve the non-linear inverse problem (9). With this
goal, a non-linear least squares (LS) has been considered
as follows: Given b⃗ ∈ R+M the measurements vector, find
S⃗h ∈ CJN such that

S⃗h = argmin
S⃗∈CJN

||AS⃗ − b⃗||,
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Figure 8. Number of iterations of the AAR method
with respect to the SNR present in the initial guess of
the iterative procedures.

where A ∈ MM×JN (C) and M ≥ 2JN . Despite this
approach does not require to work with unitary matrices
since A is very ill-conditioned, the SVD decomposition
A = UΣV∗ is used to work with well-balanced unitary
matrices. In that manner, the LS optimization problem
associated with (9) can be stated as follows:

y⃗h = argmin
y⃗∈CJN

||U y⃗ − b⃗||,

Sh = VΣ−1y⃗h.

Even in this case, an initial guess is required to solve the
LS optimization problem.

Figure 9 shows the number of iterations required to
reach convergence depending on the Signal-to-Noite ratio
added in the initial guess used to start the LS optimiza-
tion procedure. It can be observed again that an accurate
initialization is required to limit the number of iterations.
However, this LS optimization procedure exhibits a more
robust behaviour with larger values of SNR in the initial
guess, and it requires less number of iterations than the
AP and AAR approaches.

6. CONCLUSIONS

The present contribution models the near-field of an un-
derwater transducer by means of an integral representa-
tion used for the pressure field generated by an acoustic
pointwise source. The nested Gauss-Patterson quadrature
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Figure 9. Number of iterations of the LS method
with respect to the SNR present in the initial guess of
the iterative procedures.

is used to evaluate both real and imaginary path integrals.
Instead of using a standard linear pointwise approxima-
tion, a novel PUFEM method is used to approximate the
directivity pattern. The use of this discretization leads to
accurate results when the full data is available. Otherwise,
the numerical solution of the phase retrieval inverse prob-
lem requires an accurate initialization is required to limit
the number of iterations required for convergence.
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