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ABSTRACT* 

Voice disorders can reduce an individual's ability to 
produce intelligible speech; however, intelligibility in 
dysphonia has limited study. Current methods of 
intelligibility assessment are subjective and time-
consuming, making reliable, efficient monitoring of patient 
progress difficult for clinicians. Machine-learning 
techniques, however, may provide novel, automated 
assessment solutions. This study aims to discover machine-
learning models that differentiate habitual speech (HS) from 
hyperarticulated or “clear speech” (CS). Two corpora with 
same-subject recordings of HS and CS were used. The 
corpus consisted of 115 speakers, 65 healthy and 50 with 
mild-to-moderate voice disorders, saying six sentences from 
the Consensus of Auditory-Perceptual Evaluation. Acoustic 
analyses revealed significant differences between HS and 
CS in speech rate and CPP for female speakers. Various 
machine modeling techniques are explored for their ability 
to differentiate HS and CS, and the results are reported. 
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1. INTRODUCTION 

Voice disorders, also known as dysphonia, affect a 
significant proportion of the global population, with a 
lifetime prevalence of an estimated 30% in the general 
United States population [1]. These disorders lead to 
reduced speech intelligibility, particularly in noisy 
environments [2], and can considerably impact affected 
individuals' quality of life and social interactions [3]. 
Although various voice therapy techniques have been 
developed to improve speech intelligibility, assessing the 
effectiveness of these interventions, and estimating the 
intelligibility gain can be challenging. The challenge is that 
intelligibility is typically judged subjectively and 
perceptually, with assessments influenced by listener 
experience, knowledge, and familiarity with the speaker [4]. 
Therefore, an objective, software tool that can accurately 
estimate intelligibility gains resulting from the 
implementation of voice therapy techniques is needed. 
 
Clear speech, a speaking style characterized by hyper-
articulation of speech sound, is known to yield greater 
intelligibility than casual speech. It has been widely studied 
for its potential to improve communication for individuals 
with hearing and speech disorders [5-7]. The acoustic-
phonetic properties of clear speech are distinct from those 
of casual speech and include features, such as a slower 
speaking rate, increased intensity, articulatory precision, 
and expanded vowel space [8]. Due to its intelligibility 
benefits, clear speech was incorporated into Conversation 
Training Therapy, a voice therapy program [9]. 
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Automated detection of clear speech could therefore 
support multiple ends, including providing 1) an objective, 
computer-aided assessment of the clear speech condition, 2) 
an objective, computer-aided measurement contributing to 
intelligibility assessment, and 3) input features useful in 
machine modeling of a variety of expressive speech states, 
speech disorders, or neuropsychiatric conditions. To our 
knowledge, prior work has yet to produce an AI system that 
can automatically detect or assess clear speech. Recent 
work in voice-enabled AI, however, has demonstrated 
techniques for automated detection of voice disorders [10-
11], emotional states [12-14], neurological conditions [15-
20], psychiatric conditions [21-25], and more. In this study, 
we aim to 1) assess acoustical differences between clear and 
conversational speech in dysphonic and healthy voices and 
2) produce a preliminary machine model that can support 
the automated detection of clear speech using similar voice-
enabled AI techniques. Results are reported.  

2. METHODS 

2.1 Description of the speech database 

This study used a corpus of HS and CS audio recordings, 
including six sentences from the Consensus of Auditory-
Perceptual Evaluation of Voice (CAPE-V) [26]. These 
recordings were collected as part of two clinical studies: one 
aimed to evaluate the effectiveness of gargle phonation 
therapy [27], and another sought to examine the feasibility 
of using speech-based biomarkers for automatic detection 
of gastroesophageal reflux disease [28]. The corpus 
included 37 females, with normal voice and speech with an 
average age of 55.95 years (SD = 15.06), and 39 females 
with mild-to-moderate dysphonia, with an average age of 
59.21 years (SD = 16.20). Among male participants, 28 had 
normal voice and speech, with an average age of 60.43 
years (SD = 14.36), and 11 had mild-to-moderate 
dysphonia with an average age of 64.45 years (SD = 13.60). 
Four speech-language pathologists determined dysphonia 
severity via auditory-perceptual rating on a 0-100 scale. 
Speakers were native speakers of American English. 

2.2 Speech Recording Procedures 

Speech samples were recorded on a digital recorder 
(TASCAM-DR-40X) with a headset microphone (AKG 
C555L), using a consistent 5 cm distance from the corner of 
the participant’s mouth. The sampling rate of the recordings 
was 44.1 kHz with a depth of 16 bits. The recordings were 
collected in a quiet office room. 

2.3 Acoustic analyses 

The samples were acoustically analyzed with PRAAT to 
obtain speech rate, intensity, and cepstral peak 
prominence (CPP), a measure sensitive to dysphonic 
voice quality [29]. Speech rate was calculated using a 
script by de Jong and Wempe [30]. CPP was obtained 
with a PRAAT plug-in software with a voice detection 
function [31].  

2.4 Statistical analyses for the acoustic measures 

A repeated measures ANOVA was conducted to examine 
the effect of diagnosis, sex, and speech production style on 
acoustic measurements, specifically speech rate, intensity, 
and CPP (Cepstral Peak Prominence). A pairwise t-test with 
Bonferroni correction was utilized to identify pairs with 
statistically significant differences. 

2.5 Machine Model Development 

To develop a preliminary machine model capable of 
detecting clear speech, we first prepared the CAPE-V data 
for analysis by ensuring samples were single-channel, 
44.1K sampling rate, 16-bit recordings, and rescaling the 
recording amplitudes for each speaker’s recording. Next, 
the recordings were segmented by sentence. Afterwards, 
130-frame-level features (low-level descriptors, or LLDs) 
and 6369 summary features were extracted using the 
OpenSMILE [32] ComParE 2016 data set [33] configured 
to use 60 msec frames advancing at a 10 msec rate. The 
feature set was selected because the range of features was 
suitable for detecting qualitative changes in voice and had 
been successfully used in practice and in paralinguistic 
challenges [33] to detect a variety of vocal expression 
modes and health states.  
 
Next, random forest classifiers were explored for their 
ability to distinguish between clear and habitual speaking 
styles, including both dysphonic and normal speakers. 
Separate models were developed for males and females due 
to the fundamental gender differences and the small size of 
the dataset.  Both frame-level features (the instantaneous 
LLD measurements) and summary features (statistical 
measures on the frame-level measurements across the 
CAPE-V utterances) were explored during model building. 
Models were validated using a nested 3-fold cross-
validation, and conditions were randomly balanced so that 
each condition had equal representation within a given 
model and fold. First, low-variance features were removed 
from consideration. Next, features were ranked within fold 
using the ANOVA F-value, and models were trained, also 
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within fold, using a successively smaller number of features 
based on the within-fold feature ranking (a recursive feature 
elimination, or “RFE" approach). The best and average 
model performance measurements were reported (F1 
scores).  Then, the ability to distinguish between clear and 
habitual speaking styles was explored for dysphonic and 
normal speakers separately, using similar machine models, 
and compared with models that included both dysphonic 
and normal speakers. Finally, to measure the relationship 
between clear/habitual speech and intelligibility, similar 
random forest classifiers were developed to measure the 
ability to discern normal and dysphonic speech in the clear 
and habitual speaking styles. 

3. RESULTS 

3.1 Acoustic results  

3.1.1 Speech rate 

The results of a repeated measures ANOVA indicated no 
significant main effect of diagnosis, F(1, 112) = 0.832, p = 
0.3638, η² = 0.38. However, there was a marginally 
significant main effect of sex, F(1, 112) = 3.770, p = 
0.0547, η² = 1.70. For the within-subjects factor, a 
significant main effect of speech production style was 
observed, F(1, 114) = 10.4, p = 0.002, η² = 2.246. 
 
A pairwise t-test with Bonferroni correction indicated a 
significant difference in speech rate between clear and 
habitual speech styles was observed (t(75) = -4.68, padj = 
0.0000123) for females. For males, no significant difference 
in speech rate between clear and habitual speech styles was 
found (t(38) = 0.262, padj = 0.794): see Fig. 1. 

  
Figure 1. Line plot showing speech rate for habitual 
and clear speech in female and male speakers. The dot 
indicates mean and error bar indicates standard error. 
 

3.1.2 Intensity 

A repeated measures ANOVA revealed no significant main 
effect of diagnosis F(1, 112) = 0.127, p = .722, η² = 4.00. 
However, there was a marginally significant main effect of 
sex, F(1, 112) = 3.813, p = .053, η² = 120.33. A significant 
main effect of speech production style was observed for the 
within-subject factor: F(1, 114) = 103.7, p < .001, η² = 
194.32: see Fig. 2. 

Figure 2. Line plot showing intensity for habitual and 
clear speech in normal and dysphonic speakers. The 
dot indicates mean and error bar indicates standard 
error. 

3.1.3 CPP 

A repeated measures ANOVA revealed a significant main 
effect of diagnosis, F(1, 112) = 8.447, p = 0.004, η² = 19.06, 
as well as a significant main effect of sex, F(1, 112) = 
6.276, p = 0.014, η² = 14.16. For the within-subjects factor, 
a significant main effect of speech production style was 
observed, F(1, 114) = 5.912, p = 0.0166, η² = 10.51. 
 
A pairwise t-test with Bonferroni correction was conducted 
to compare the CPP between clear and habitual speech 
production styles across different groups based on diagnosis 
and sex. In normal females, a significant difference in CPP 
between the two speech styles was also found (t(36) = -
2.06, padj = 0.047). For dysphonic females, a significant 
difference in CPP between habitual and clear speech styles 
was observed (t(38) = -5.06, padj = 0.00001). For dysphonic 
males, no significant difference in CPP between clear and 
habitual speech styles was detected (t(10) = -1.11, padj = 
0.294). Similarly, no significant difference in CPP between 
the two speech styles was observed in normal males (t(27) 
= 0.863, padj = 0.396): see Fig. 3 
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Figure 3. Line plot showing CPP rate for habitual and 
clear speech in normal and dysphonic speakers. The 
dot indicates mean and error bar indicates standard 
error. 

3.1.4 Correlation between intensity and CPP 

Because CPP is known to be sensitive to vocal intensity 
[34], a Pearson's product-moment correlation was 
conducted to analyze their relationship. The results 
indicated no significant correlation between intensity and 
CPP (r = 0.0779, t(228) = 1.18, p = 0.239). The 95% 
confidence interval for the correlation ranged from -0.052 
to 0.205. 

3.1.5 Alpha Ratio 

A repeated measures ANOVA indicated a significant main 
effect of diagnosis on the dependent variable, F(1, 112) = 
1.493, p = .224, η² = 0.011, and no significant main effect of 
sex, F(1, 112) = 2.553, p = .113, η² = 0.019. However, style 
had a significant main effect on the dependent variable, F(1, 
114) = 79.53, p < .001, η² = 0.031.  
 

Figure 4. Line plot showing Alpha ratio for habitual 
and clear speech in normal and dysphonic speakers. 
The dot indicates mean and error bar indicates 
standard error. 

3.2 Automated detection of the clear speech condition 

The resulting models demonstrate that the clear speech 
condition is discernable in CAPE-V speech in both males 

and females. See Figure 5 below.  We report the best and 
average F1 scores obtained in modeling for discernment of 
clear speech in both males and females (see Figure 5). The 
summary (SUM) features far outperformed frame-level 
(LLD) features in modeling, resulting in best F1 scores for 
models based on SUM features at 0.71 for males and 0.83 
for females. The instantaneous, frame-level features, when 
extended across the entirety of the utterances, did not result 
in a random forest classifier that could easily discern 
between conditions. The models based on female speech 
also outperformed the models based on male speech by 
10% or more. Figure 6 shows the receiver operating 
characteristic (ROC) curve for clear vs. habitual speech in 
both males and females. 
 

 

Figure 5. Results show the performance of Random 
Forest classifiers trained to discern clear from 
habitual conditions using both OpenSMILE frame-
level (LLD) and Summary (SUM) features. 
Conditions were balanced and best and average F1 
scores were reported. 
Figures 7 highlights differences between the clear and 
habitual conditions for highly ranked features in men. 
Many of these features applied to the minSegLen, or 
minimum segment length condition, in which segment 
boundaries are defined by a signal changing more than a 
designated threshold when a current frame is compared 
to a running average computed over prior frames. The 
minSegLen condition differences are likely due to 
combined differences in articulation, vowel duration, and 
separation between words present in clear vs. habitual 
speech. Spectral skewness measures the symmetry of a 
spectrum around its arithmetic mean; therefore, signals 
that have relatively high energy around the fundamental 
frequency compared to the energy distributed to the rest 
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of the spectrum will have a higher skewness value. 
Examples of speech with more energy in the higher 
frequencies includes noisy and resonant speech. Since 
the minSegLength functional is also applied to spectral 
skewness, the model may be tracking articulation 
differences between clear and habitual speech within 
short segments (emphasized consonants).  
 

 
 
Figure 6. Receiver Operating Characteristic (ROC) 
curve for Clear vs. Habitual speech for a) males (F1= 
0.71) and b) females (F1=0.83) speech. 
 

 
 
Figure 7. Differences between the clear (CLR) and 
habitual (HAB) conditions in highly-ranked features 
in males: a) mfcc_sma_de[7]_minSegLen,  
b) mfcc_sma[11]_minSegLen,  
c) pcm_fftMag_fband250-650_sma_linregc1, and 
d) pcm_fftMag_spectralskewness_sma_minSegLen. 
 
Figure 8 highlights differences between the clear and 
habitual conditions for highly ranked features in women. 
The harmonic-to-noise ratio (HNR) likely shows 
differences in consonant articulation between the clear 
and habitual conditions (logHNR_sma_centroid feature). 
In the pcm_zcr_sma_de_minSegLen features, the zero 

crossing rate (ZCR) mirrors differences in high 
frequency components between conditions. This is 
specifically looking at how ZCR changes during speech 
in the context of the minimum segment length condition. 
Differences in articulation of consonants, separation of 
words, and durations are probably reflected in both the 
HNR and ZCR features. The 1000-4000 Hz band in 
women includes higher harmonics, formants (most often 
F2, F3), and noise. Therefore, the 
pcm_fftMag_fband1000-4000_sma_linregc1 is likely 
reflecting formant differences, differences in 
articulations, differences in vowel/consonant durations, 
and differences in how these values change during an 
utterance between the two speaking styles. The 
“lengthL1norm” is the sum of the magnitudes of the 
frequency vectors in the space. This feature, too, is likely 
to reflect differences between signals containing many 
higher frequency components and those that do not. Note 
that the spectra of noisy, obstruent consonants typically 
have high-frequency components that sonorant 
consonants and vowels do not. 
 

 
 
Figure 8. Differences between the clear (CLR) and 
habitual (HAB) conditions in highly-ranked features 
in females: a) logHNR_sma_centroid,  
b) pcm_fftMag_fband1000-4000_sma_linregc1,  
c) audspec_lengthL1norm_sma_linregc1, and 
d) pcm_zcr_sma_de_minSegLen. 
 
 
Figure 9 shows the differences in discerning CS and HS 
for dysphonic and normal speakers. This distinction is  
more challenging to make using OpenSMILE features 
when speakers are dysphonic, which is reflected by 
higher F1 scores for normal speakers. 
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Figure 9. Results show the performance of Random 
Forest classifiers trained to discern clear from habitual 
speech for both dysphonic (Dys) and normal (Norm) 
speakers separately using OpenSMILE summary 
(SUM) features. Conditions were balanced and best 
and average F1 scores were reported. 

3.3 Automated detection of the dysphonic condition in 
clear and habitual speech 

Clear speech increased the difficulty of recognizing the 
dysphonic condition in the female voice samples by 
about 6%, potentially reflecting improved voice quality.  
Similar results were not seen in the male voice samples, 
probably because the signal differentiating clear speech 
in males was not as strong in our sample.  See Table 1. 

Table 1. Detection of dysphonic vs. normal voices in 
clear/habitual speaking styles for males and females. 

Clear/ 
Habitual 

Gender 
(M/F) 

 
Best F1 

Average F1 
(µ/s) 

Clear F 0.77 0.70/0.058 
Habitual F 0.83 0.76/0.067 
Clear M 0.78 0.72/0.074 
Habitual M 0.78 0.72/0.094 

4. DISCUSSION & CONCLUSIONS 

The results of acoustic analyses showed that intensity was 
greater for clear speech than habitual speech in both female 
and male speakers. Furthermore, Alpha ratio was greater for 
clear speech, indicating that clear speech signals contained 
more high-frequency energy than habitual speech [8]. These 
results corroborate previous acoustic studies of clear 
speech. However, speech rate and CPP were significantly 
greater for clear speech only in female speakers. The lack of 

difference in male speakers is likely because most female 
speakers came from the gargle phonation study, whereas 
male speakers came from the GERD study. Although the 
same instructions for eliciting clear speech were used in 
both studies, participants in the gargle phonation study were 
instructed by speech-language pathologists (SLPs). In 
contrast, participants in the GERD study were instructed by 
research staff without clinical training in speech-language 
pathology. Previous studies have shown that the way clear 
speech is produced can be affected by how the instructions 
are given to speakers [35]. The lack of correlation between 
intensity and CPP indicates that the increase in CPP was not 
due to an increase in intensity. Instead, the increase in CPP 
observed in clear speech is likely associated with increased 
periodicity in the signal.   
 
The machine models successfully separated men’s and 
women's clear and habitual speech conditions. The higher 
F1 scores for females most likely reflected differences in 
instructions given to the participants (most of the female 
participants were instructed by SLPs). The highly-ranked 
features in the models for both males and females likely 
mirrored differences in articulation, duration, and separation 
of words between the two conditions.   
 
While this study discerns differences in habitual and clear 
speech and demonstrates the feasibility of the approach, it 
remains a preliminary study due to the limited set of speech 
data with imbalanced populations and simple machine 
modeling techniques that limit the generalizability of the 
results. Future work will address these limitations, 
incorporate a more diverse set of speakers from different 
cultural backgrounds and geographical regions, and include 
a broader range of dysphonic speech types and dysphonia 
severity levels. The data sample was also biased across age 
and demographics and imbalanced across conditions. We 
addressed the imbalanced data for machine modeling via 
random undersampling of the majority class. While the 
machine models used in this study were classic machine 
learning models, more advanced deep learning techniques 
will improve model performance in the future. Finally, 
more work is needed to quantify the relationship between 
clear speech and intelligibility. 
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