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ABSTRACT

Staggered second-order finite-difference time-domain
(FDTD) schemes are commonly used to solve the lin-
earized equations of continuum mechanics for the acous-
tic scattering of objects. They are simple to implement and
parallelize, a key feature in the era of exascale computing.
However, their low resolution due to their formal low or-
der and stair-step representation of media interfaces is a
major drawback. This requires a fine grid resolution to re-
duce numerical dissipation and dispersion, leading to high
computational costs in three-dimensional configurations.
To counteract this issue, we propose a multi-grid FDTD
method. Here, the mesh is refined locally in a region of
interest, while a coarser grid is employed in the remaining
domain. In the fine grids, the staggered FDTD is used,
and in the coarse grid, higher-order staggered schemes are
included to account for the decreased resolution due to the
larger spacing. High-order interpolation is used to match
the solutions at the grid interfaces. The effectiveness of
the technique will be tested on well-known benchmark
test.
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1. INTRODUCTION

The acoustic scattering by objects embedded in a single
or multi-media domain is a challenging problem that re-
quires the use of numerical methods. The most common
approaches are the semi-analytical techniques, such as
the elastodynamic geometric theory of diffraction [1] and
the boundary element method [2], and the purely numer-
ical techniques, such as the finite-element methods [3, 4]
and finite-difference time-domain (FDTD) methods [5–7].
The purely numerical techniques are more flexible when
dealing with the scattering from complex objects and in-
terfaces, since the surfaces can be tackled directly with-
out the need for complicated analytical treatments, if they
exist. In particular, the FDTD methods have an advan-
tage over some of the techniques mentioned in assigning
the distribution of the material properties and in defin-
ing the geometries and the interfaces of the objects. In
fact, these methods combine simplicity and ease of im-
plementation and parallelization that, in the era of exas-
cale computing, is certainly one of the most important
features to consider. Among the FDTD methods, the
staggered second-order FDTD scheme (equivalent to the
elastodynamic finite integration technique, EFIT [6, 8])
is one of the most adopted and successful techniques
to tackle the linearized equations of continuum mechan-
ics for the acoustic scattering of objects. The advan-
tage of the grid staggering is that it implicitly guaran-
tees the direct enforcement of the boundary conditions.
However, as any other finite-difference scheme, the stag-
gered second-order FDTD scheme suffers of an inherent
low resolution, due to their formal low-order of accuracy,
and poorly describes the interfaces between media (e.g.
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object/water) with a stair-step representation. Thereby,
a staggered second-order FDTD scheme requires high-
resolution grids to capture the small-scale features of the
scattering by the objects (considering the vast range of
scales involved) and to reduce the numerical dissipation
and dispersion. These high-resolution grids lead to enor-
mous computational costs in three-dimensional configu-
rations. To avoid this problem, we propose a staggered
FDTD multi-grid method where high-resolution grids are
embedded in the coarse mesh to target the presence of ob-
jects and interfaces. The finer grids are coupled to the
coarser grid by exchanging boundary conditions at the in-
terface between them. Interpolation is needed since the
high-resolution grids refine the mesh locally in a discon-
tinuous manner. The embedding procedure allows for
accurate and efficient simulations of complex phenom-
ena with a wide range of scales [9–11].All the methods
introduced so far in the acoustic analysis present a dis-
continuity of resolution between the coarse and the fine
grid, since no numerical trick is introduced to increase
the resolution in the coarse lattice and the order of the
numerical schemes is maintained identical across them.
This affects the quality of the solution on the coarser grid
due to the intrinsic lower-resolution spacing. To over-
come this problem, we propose an iso-resolution method,
where two different schemes are adopted between the two
different regions. This allows having a uniform resolu-
tion on the whole domain. Specifically, in the fine grids,
the aforementioned second-order staggered FDTD is em-
ployed whereas in the coarse grid higher-order staggered
schemes are used to compensate the decrease in resolution
due to the larger spacing. To complete the treatment, a
high-order interpolation at the grid interfaces is employed
to match the solutions on the two grids, thus reducing the
artificial dispersion introduced by the lattice discontinuity.

2. METHODOLOGY

We consider the three-dimensional acoustic and elastic
linearized wave equations
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where ρ is the density of the medium, λ and µ are the
Lamé parameters, v′i is the perturbation of the ith compo-
nent of the velocity vector, σ′ij is the perturbation of the

ijth component of the stress tensor, fi and Gij are source
terms. The subscripts i ∈ [1, 2, 3] and j ∈ [1, 2, 3] indi-
cate the Cartesian directions x1 = x, x2 = y and x3 = z,
where the latter indicates the vertical direction, taken pos-
itively from the bottom of the domain and the former two
are the horizontal directions, respectively. The set of equa-
tions (1) are numerically solved in a cubic box whose di-
mension depends on the physics of the problem at hand.
In a simplified scenario of interest for this work, the com-
putational box generally includes a multi-media domain,
Ω1 (a fluid at rest, e.g. water) and Ω2 (e.g. a scattering ob-
ject), and a localized acoustic source. At the interfaces be-
tween two different media, the following constraints must
be verified: 1) continuity of the normal velocity; 2) conti-
nuity of the normal stress; 3) tangential stress must vanish
(fluid-solid interface). The system (1) is discretized on a
uniform Cartesian grid with a staggered FDTD [6]. The
time discretization is uniform on the whole domain, with a
second-order accuracy finite-difference scheme. The spa-
tial order of accuracy varies with the choice of the scheme
employed in the coarse and fine grids. Specifically, we
adopt the standard second-order scheme in the fine grid,
whereas in the coarse grid the scheme selection is affected
by the ratio r between the coarse and the fine spacing.
Note that in the method implemented in this work, only
odd ratios can be chosen to minimize the number of in-
terpolations needed (staggered grid). To select the appro-
priate scheme that guarantees an iso-resolution over the
whole computational box, we introduce a criterion based
on a threshold that limits the numerical dispersion intro-
duced by the numerical schemes as a function of the maxi-
mum resolved scales. The threshold is chosen empirically,
such that the numerical dispersion is lower than a small
value ε. The choice of ε can influence the order of the
scheme in the coarse grid. For the sake of simplicity, we
introduce the mono-dimensional relation for P-waves that
links the numerically solved frequency ω∗ and the relative
grid spacing ∆,

ω∗∆t = 2 arcsin

[
CFL

M∑
m=1

am sin

[
k∆

2
(2m− 1)

]]
,

(2)
where M is the number of points of the one-sided sten-
cil that, for even-order schemes, defines the order of the
scheme itself N = 2M . The coefficients am are the sten-
cil coefficients of the numerical scheme chosen, ∆t is the
time-step, k is the wavenumber and CFL is the Courant
number that relates ∆t and ∆ with the wave velocity c,
i.e. CFL = ∆t c/∆. The analytical frequency ω, instead,
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can be written as ω∆t = CFL k∆. The aforementioned
threshold that limits the numerical dispersion can be de-
fined as T = |ω − ω∗|∆t, and it is set to T = 5 × 10−4.
In this way, to obtain an iso-resolution among all the com-
putational points, an eight-order scheme in the coarse grid
is employed if r = 3 (a twelfth-order scheme if r = 5).
To avoid further numerical dispersion, a high-order La-
grangian interpolation (> 4) is employed at the interface
between the grids to calculate boundary values for the fine
grid and to reduce the numerical dispersion introduced by
the mesh discontinuity. Finally, the coarse nodes shared
with the fine grid are updated through the values computed
on the latter. The properties of the media are evaluated on
every grid cell in the same place as the normal stresses
and are averaged among the neighbouring points when an
intermediate value is needed (e.g., density for the veloc-
ity components integration and Lamé parameters for the
shear stress components integration). The point-wise def-
inition of the properties of the materials directly define the
different objects belonging to the computational domain,
with no particular treatment needed to outline the inter-
faces. At the boundaries of the computational box, we
implement the perfectly matched layer (PML) method in-
troduced in Calvo et al. [7] to avoid artificial reflections.
The PML absorbs and dampens all the waves coming from
inner domain in a layer of 60 points in this work. Finally,
the acoustic source is a spherical source whose implemen-
tation is extensively described in our previous work [12].
Its location does not influence the design of the multi-
grid method. The code is written with NVIDIA’s CUDA
paradigms to parallelly run on a single GPU device.

3. PRELIMINARY RESULTS

To assess the validity of the method, a three-dimensional
numerical experiment is carried out. A spherical Ricker
pulse with Gaussian aperture is applied to the right-hand-
side of the normal stresses equations (1). The implemen-
tation of the source comes from the integral form of the
Ricker pulse with Gaussian aperture described in our pre-
vious work (extended-source [12]). The pulse adopted
here, with central frequency fc = 25000 Hz, central
time tc = 0.1 ms and standard deviation of the Gaus-
sian aperture α = 0.012 m, is emitted from a source
centred in (x, y, z) = (0.5, 1.0, 1.0) m and is scattered
by a solid sphere with radius R = 0.1 m centred in
(x, y, z) = (1.3, 1.0, 1.0) m. The sphere has density ρs =
2700 kg m−3, speed of the P-waves cp = 6420 m s−1, and
speed of the S-waves cs = 3040 m s−1, and is immersed

in a fluid with density ρw = 1000 kg m−3 and speed of
sound cw = 1500 m s−1. The simulation is carried out on
computational box with size Lx ×Ly ×Lz = 1.9 m×1.9
m×1.9 m. The coarse grid uniformly discretizes the do-
main with a Cartesian lattice having Nx × Ny × Nz =
640 × 640 × 640 points, yielding to a resolution ∆ =
2.97× 10−3 m. The finer grid, instead, is built around the
sphere to have a better description of the interfaces and it
is defined by r = ∆c/∆f = 3, where the subscripts c
and f indicate the coarse and fine grid respectively. This
brings to a resolution ∆f = 1× 10−3 m and a number of
points Mx ×My ×Mz = 808 × 808 × 808. The size of
the box for the finer grid is chosen such that is contains in-
dicatevely twice the typical length of the scattered object
(i.e., twice the diameter of the sphere). As seen in the pre-
vious section, the choice of r = 3 leads to the use of the
eight-order scheme in the coarse grid and, to avoid arti-
ficial reflections, an eight-order Lagrangian interpolation
is employed at the interfaces between the two grids. The
time-step is defined through the condition CFL = 0.4
tuned on ∆f and cp, resulting in ∆t = 6.1750−5 ms. The
results are shown in Figure 1, where two instantaneous
snapshots of the stress field σyy are shown together with
σyy signal recorded on a probe placed in the fluid. The
signal is then Fourier transformed and the amplitude of the
Fourier coefficients is compared to the analytical solution
with a very good agreement in the range of frequencies of
interest, i.e. f ≤ 70000 Hz. In the figure, the location
of the fine grid is highlighted with a red box. Note that
without the multi-grid method, an equivalent resolution
∆f would require Nx×Ny×Nz = 1920×1920×1920.

4. CONCLUSIONS

In this work, we implemented a novel multi-grid method
that guarantees an iso-resolution on the whole computa-
tional domain. To obtain the iso-resolution, we increase
the order of the scheme adopted for the discretization of
the acoustic and elastic linearized wave equations on the
coarse grid. The choice of the scheme is based on the
criterion defined by the comparison between the numeri-
cal resolution and the analytical. To assess the quality of
the method, we carried out a benchmark test and we show
that the numerical solution agrees with the analytical one
in the range of frequencies of interest.
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Figure 1. Left and mid panels: two-dimensional slice at y = 1 m of the instantaneous stress fields σyy at
t = 0.37 ms and t = 0.74 ms. Right panel: amplitude of the Fourier coefficients of the σyy signal recorded at
(x, y, z) = (1.3, 1.0, 1.3) m (blue line) compared with the analytical solution computed at the same location
(red line with markers).
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