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ABSTRACT

A latent symmetry is a novel type of symmetry which, in
general, is not apparent from a geometric inspection of
the system. Instead, it becomes visible after a suitable
dimensional reduction: The so-called isospectral reduc-
tion, which is akin to an effective Hamiltonian. We show
that latent symmetries in an acoustic waveguide network
can lead to two interesting phenomenae: Point-wise par-
ity of all eigenmodes, and equireflectionaly. In the latter,
a geometrically asymmetric network features the same re-
flection from the left and from the right, just as a mirror-
symmetric network would.
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monomode approximation, quantum graphs

1. INTRODUCTION

Symmetries are of high importance in physics, as they dic-
tate the fundamental form of physical laws [1, 2] and lead
to precious insights such as selection rules for atoms and
molecules [3, 4] or the emergence of band structures in
crystals [5].

Recently, a new symmetry concept has been intro-
duced, namely, that of latent symmetry. A latent sym-
metry is a symmetry not of the original Hamiltonian, but
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of an equivalent dimensionally reduced effective Hamilto-
nian [6, 7]. Although originally stemming from the math-
ematical field of graph theory, latent symmetries have
been applied in the past years to physical systems as
well [7–12]. In this work, we summarize the most recent
results which bring the concept of latent symmetries to
networks of one-dimensional waveguides. We note that
such networks are also known under the term “quantum
graphs”; see [13] for an introduction into this field. Be-
sides their obvious realization in terms of acoustic waveg-
uides (discussed here) [10, 14, 15], such quantum graphs
can be realized also in the form of microwave networks
[16, 17].

2. LATENT SYMMETRIES IN WAVEGUIDE
NETWORKS

To illustrate the concept of latent symmetries, let us focus
on the waveguide network depicted in fig. 1 (a). It consists
of 14 identical waveguides with length L = 10cm and
width w = 1cm. Since we are dealing with thin waveg-
uides (w ≪ L), we can treat them as monomodal for suffi-
ciently low frequencies. This allows us [10,13–15,18,19]
to convert the continuous problem of finding the eigen-
modes ϕ (wich are solutions of the Helmholtz equation
with Neumann boundary conditions) into the problem of
finding the eigenvectors of the generalized matrix eigen-
value problem

Aϕ = cos(kL)B ϕ . (1)

Here, cos(kL) is the eigenvalue, k = ω/c denotes the
wavenumber, with ω being the angular frequency and c the
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Figure 1. A latently symmetric waveguide network, realized with thin, square-shaped acoustic waveguides of
length L = 0.1m and side length w = 10mm. (a) The 10th mode of the acoustic network with closed ends.
(b) shows the corresponding discrete model (graph). (c) When opening the two points a, b and connecting
external waveguides to them, we can describe the system as a two-port device. (d) shows a comparison of the
reflection coefficients ri(f) of the two ports in the complex plane for the case of lossy waveguides (modelled
by a complex wavenumber k). As can be seen, we have broadband equireflectionality, that is, r1 = r2.

sound velocity in air, and with the N -dimensional eigen-
vector ϕ denoting the values of the eigenmode ϕ at the N
endpoints of waveguides (see inset of fig. 1(a) for details).
The matrix A describes the topology of the setup, with
Ai,j = 1 if the endpoints i, j are connected by a waveg-
uide, and Ai,j = 0 otherwise. The matrix B is diagonal,
with Bi,i =

∑
j Ai,j . For the waveguide network of fig. 1

(a), its matrix A is pictorially represented in fig. 1 (b).
By applying the transformation y =

√
Bϕ to eq. (1),

we arrive at the “Hamiltonian” H =
√
B

−1
A
√
B

−1
and

the classic eigenvalue problem

Hx = λx (2)

with λ = cos(kL) and x =
√
Bϕ. This formulation of the

problem allows us to apply the theory of latent symmetries
onto the problem [6, 9, 10, 20].

A system posseses a latent reflection symmetry over
a set of two sites S = a, b if its effective Hamiltonian
H̃S(λ) = HSS + HSS (λ 1 −HSS)

−1
HSS commutes

with the reflection matrix ( 0 1
1 0 ), where S is the comple-

nent of S, and HSS , HSS , etc. denote submatrices of
H . The consequence of such a latent symmetry is that all
eigenvectors x feature parity on the two sites S. When the
Hamiltonian H describes an acoustic waveguide network,
as is the case here, then such a latent symmetry translates
to the statement that all low-frequency eigenmodes ϕ fea-
ture pointwise parity on a and b [10].

Let us now come back to our waveguide network of
fig. 1 (a). As can be easily shown, the corresponding
Hamiltonian H is indeed latently reflection symmetric for
S = {a, b}. This can also be seen from the wavefield de-
picted in fig. 1 (a), which corresponds to the 10-th eigen-
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mode of our latently symmetric network and which clearly
has positve point-wise parity on the two points a, b.

So far, we have seen that a latently symmetric
waveguide network has point-wise parity for the (low-
frequency) eigenmodes. However, such a symmetry like-
wise has a strong impact on the scattering properties of
the network. To this end, let us open the network at the
two points a, b (see fig. 1 (c)) by connecting monomodal
waveguides. The scattering problem can then be described
using the scattering matrix S as [12](

ψ−
1

ψ−
2

)
=

(
r1 t
t r2

) (
ψ+
1

ψ+
2

)
= S

(
ψ+
1

ψ+
2

)
, (3)

where the ouput and input waves are denoted, respectively,
by (ψ−

1 , ψ
−
2 )

T and (ψ+
1 , ψ

+
2 )

T . The off-diagonal ele-
ments S1,2 and S2,1 denote the transmission coefficients;
due to reciprocity they are equal in this case. The diago-
nal elements S1,1 and S2,2 denote the respective reflection
coefficients of the two ports 1, 2.

Now, since the eigenmodes of the network all feature
parity on the points a, b, it can be shown—by using the
Green’s function of the closed setup [10,12]—that the two
reflection coefficients are equal, r1 = r2 for all frequen-
cies (of course, only as long as the monomode approxi-
mation holds). This broadband equireflectionality is inter-
esting, as one would normally expect it only from a geo-
metrically symmetric waveguide network. We note that,
since all waveguides are identical, this result even holds
when we introduce viscothermal losses (here modelled by
a komplex wavenumber k), as can be seen in fig. 1 (d).

3. CONCLUSIONS

Latent symmetries are a recently introduced concept that
give a new perspective on a class of seemingly asymmetric
systems. Here, we have discussed the concept in terms
of acoustic waveguide networks, where latent symmetry
leads to point-wise parity of eigenmodes and broadband
equireflectionality.
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