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ABSTRACT

Personalised head-related transfer functions (HRTFs) rep-
resent a key component for applications in virtual or
augmented reality with high demands in perceptual au-
dio. Numerical methods enable the calculation of person-
alised HRTFs based on the individual geometry of a lis-
tener. Such a geometry can be generated by exploiting
the information from multi-view-plus-depth (MVPD) im-
ages of the listener’s pinna. However, the results are typ-
ically noisy, especially in regions relevant for HRTF cal-
culations. To address this shortcoming, HRTFs can also
be calculated based on a mesh obtained from a parametric
pinna model (PPM) whose parameters were optimised to
fit noisy measurements of an individual ear geometry. The
feasibility of this approach has been investigated by em-
ploying a convolutional neural network (CNN) which pre-
dicts the PPMs parameters from synthetic MVPDs pinna-
only images. In this contribution, we varied the type of
network architecture and analysed the effects on predic-
tion accuracy. The results of comparative evaluations will
be discussed in the geometric domain to explore the limits
of the PPM-based HRTF personalisation, and corroborate
the choice of a feasible network architecture before imple-
menting further optimisation.
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1. INTRODUCTION

Personalised audio is more than ever in demand both by
industrial and academic research to achieve a high level
of plausibility when binaurally reproducing virtual acous-
tic environments. Taking advantage of the rapid process
in the field of machine learning, deep neural networks
(DNNs) have been extensively applied for the personal-
isation of HRTFs [1, 2]. Such DNNs can, for example, be
trained to directly predict the log-magnitude spectrum of
HRTFs from edge-detected single-view ear images and in-
dividual anthropometric features [3]. Despite the applica-
tion of sophisticated network architectures across studies,
the HRTFs predicted this way often suffer from inaccu-
rately restored monaural cues and may feature direction-
dependent errors.

The availability of a PPM [4] combined with methods
to numerically calculate HRTFs from meshes [5] opens up
new possibilities for HRTF personalisation. We propose
an indirect approach in which the parameters of said PPM
are predicted by a DNN from MVPD images for the best
possible adaptation of a target-ear geometry. The use of
MVPD images allows the DNN extracting latent informa-
tion from concave pinna regions which may be occluded
in single-view images, and helps mitigate estimation er-
rors provided images that were captured at varying and
unknown camera distances. The optimised PPM instance
represents an approximation of the original target mesh
and, once stitched to a head mesh, enables numerically
calculating HRTFs for arbitrary directions using soft-
ware packages like COMSOL [6] or MESH2HRTF [7].
As additional benefit, such a model-based approach also
does not involve problems emerging from artefacts that
are typically contained in photogrammetrically obtained
target-ear geometries.
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Representing a subset of DNNs, CNNs with
residual layers [3, 8] have demonstrated their feasibility
for image-classification or object-detection tasks by
utilising a sliding window to learn local features, and
skip connections to facilitate feature reusability. The
architectural category of Vision Transformers widely
surpass the performance of CNNs in such tasks by
utilising self-attention layers to assess the global relevance
of local features within a window [9]. One shortcoming
is their increased resource requirements when applied to
high-resolution images. Also, they only use image patches
with fixed size hindering to extract variable amounts
of relevant information within a window. To address
these issues, the shifted-window (Swin)-Transformer
architecture was introduced [10, 11]. Increased efficiency
is achieved by applying a shifted-window multi-head self-
attention strategy in which local features are learned by
merging initially smaller and increasingly larger image
patches within local windows to construct hierarchical
feature maps. The use of shifted windows also enables to
share local features across adjoining windows.

Since it is unclear which one of these two
fundamentally different neural-network architectures is
best suited when applied to our regression task of
estimating optimised PPM parameters, they are subject
to evaluation. In the current study, both training and
inference of each architecture are based on a synthetic
MVPD dataset which we generated using the PPM. The
accuracy in predicted PPM instances is evaluated in
the geometric domain to facilitate an informed choice
of a suitable architecture. No analysis in the acoustic
domain is carried out, rendering the current work a
preliminary study on the feasibility of the proposed
indirect HRTF personalisation approach.

2. METHODS

The proposed concept for indirect HRTF personalisation
is presented below by describing the main functional
elements, including the PPM, its application for the
creation of synthetic MVPD pinna-only images, and the
two DNN network architetures evaluated in this study.

2.1 Parametric pinna model

The PPM used in this study is defined in BLENDER [12]
and described in detail by Pollack et al. [4]. Summarised
compactly, the model consists of a well-defined template
mesh, representing a generic adult human ear, which is
connected to an armature modifiable via 144 parameters,

These PPM parameters allow controlling the global pinna
translation and rotation, and anisotropically scaling the
whole pinna mesh. They further facilitate deformation
of local pinna regions by means of a distance-based
automated-weighting function. The local deformation is
accomplished by rotating or translating the start and
end points of the underlying Bézier curves, as well as
isotropically scaling their intermediate curve segments.
Shape keys form a special subset of these PPM parameters
and are available for the refinement of concave pinna
regions and anthropometric peculiarities.

2.2 Dataset

In this work, we only varied the local location parameters
of the PPM [4]. Assuming mutually independent
continuous uniform PPM-parameter distributions,
each PPM-parameter set was drawn from multiple
independently sampled PPM-parameter distributions
over the empirically set interval [−1, 1]mm around the
default values. Note that this seemingly small variation
of individual PPM parameters in combination already
leads to a substantial deformation of the template
mesh [4], see Figure 4. In total, 10 000 PPM instances
were generated. We used PYTHON (v3.10.8) and the
module bpy (BLENDER PYTHON API, v3.5.0) to
modify the PPM. Per PPM instance, MVPD pinna-only
images, i.e. png images and OpenEXR depth images,
were rendered at a resolution of 256 × 256 px using
BLENDER’s Cycles engine for 25 camera perspectives.
The camera was positioned equidistantly to the center of
the ear-canal entrance at the ipsilateral ear side within
the azimuth and elevation-angle intervals of [225◦, 315◦]
and [−50◦, 50◦], which were discretised in steps of 22.5◦

and 25◦, respectively. For each perspective, the camera
rotation was set to point at the ear-canal entrance.
Depth information was linearly mapped between the
origin of the world coordinate system (black) and the
current camera position (white) to normalised units. We
subsequently split the data into 72% training images,
8% images reserved for intermediate validation, and
20% test images.

2.3 Concept

Figure 1 presents how the created dataset of MVPD
images can be used within the scope of the proposed
indirect HRTF-personalisation concept based on a DNN.
During training, the DNN aims at learning features from
the MVPD training images to update the DNN weights
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Figure 1: Concept for indirect HRTF
personalisation. a) Training of a DNN to predict the
PPM parameters from MVPD images by minimising
a specific loss function and correspondingly
updating the DNN weights. b) Application of the
learned DNN weights during inference to predict the
PPM parameters from unknown MVPD images and
create an optimised PPM instance for subsequent
numerical HRTF calculation.

with the aim to minimise the loss between target and
predicted PPM parameters. For inference, the learned
optimised weights are applied to the DNN to predict
the PPM parameters for each MVPD test image and
create the corresponding PPM instance. This optimised
PPM instance can subsequently be used to numerically
calculate HRTFs for arbitrary directions.

2.4 Network architectures

The proposed indirect HRTF-personalisation concept was
evaluated with two state-of-the-art DNN architectures.

The first architecture used is a modified version of
CNN-Reg [2], representing a CNN with skip connections.
This architecture features four consecutive stages and was
originally applied to predict the single-frequency gamma-
tone-filtered HRTF log-amplitude spectrum jointly for
360 directions from voxelised ear meshes. In our study,
we reduced the input dimensionality to account for
MVPD images, and jointly estimated all 54 local location
parameters in the fully-connected output layer.

Table 1: Specific implementation of the compared
DNN architectures.

Architecture
Configuration CNN-Reg Swin-XT
#Stages 4 3
#Output channels [32, 64,

per stage 128, 512]
#Heads per stage [32, 64, 128]
#Blocks per stage [1, 1, 1, 1] [2, 3, 2]
Kernel size 3
Window size 8

As second architecture, we used a scaled-down Swin
Transformer [13]. Prior work has demonstrated that
Swin Transformers are well-suited for the extraction of
features, for example, from 3D images at different levels
of resolution [14]. Transferred to the current problem,
this architecture is expected to be useful for efficiently
extracting locally restricted pinna features and weighting
their relevance for improved learning. After observing
that already the tiny variant of the Swin Transformer,
Swin-T [11, 13], is prone to overfitting most likely due
to being too large for our problem, we further reduced its
complexity. The resulting extra-tiny variant is referred to
as Swin-XT.

Both DNN architectures were implemented in
PYTORCH (v2.0.0) and their differing configuration
settings are listed in Table 1. For a fair comparison,
we aimed at matching the number of DNN weights
to approximately 5.8M, which resulted from adopting
CNN-Reg to the current problem. In both architectures,
the number of input channels was set according to the
number of camera perspectives plus the corresponding
depth images, i.e. to 50. As optimiser and loss function,
we used Adam with default PYTORCH settings and the
Huber loss, respectively. Both models were trained for
800 epochs using a batch size of 32. A cosine-annealing
schedule with the maximum number of iterations set to the
maximum number of epochs was applied. For inference
and per architecture, the learned weights from the epoch
exhibiting the lowest validation loss were loaded to test
the two architectures using the MVPD images rendered
based on the corresponding PPM test instances.
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Figure 2: Loss progressions of CNN-Reg (blue lines)
and Swin-XT (red lines) during training (solid lines)
and validation (dotted lines).

2.5 Error metric

We considered the Pompeiu–Hausdorff distance [15]

dH = max
{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}

(1)

as geometrical error metric to describe the similarity
between two point clouds with d(·), sup(·), and A,
B ⊂ R3 representing the directed point-wise distance,
the supremum, and the optimised PPM instance and
corresponding target mesh, respectively. To obtain an
average performance metric, we additionally evaluated the
mean and median values of the point-wise distances for
the direction with the larger supremum.

3. RESULTS AND DISCUSSION

Figure 2 displays the training and validation losses of both
architectures. Although both training losses show similar
exponential decays, the validation loss of CNN-Reg
takes substantially longer to converge to its minimum of
approximately 0.011 at epoch 513. This minimum is about
5.4 times higher than the one achieved by the Swin-XT
architecture which amounts to approximately 0.002 at
epoch 429. While the validation loss of CNN-Reg
remains almost constant after convergence, it increases
in Swin-XT after having reached its minimum, which
indicates overfitting. A likely better ability to generalise
to unknown MVPD images, particularly at the loss
minimum, can be attributed to the Swin-XT architecture.
This assumption is deduced from the better corresponding
training and validation losses of the Swin-XT, compared
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Figure 3: Geometric error metrics averaged over the
PPM test instances. Boxplots show the Pompeiu-
Hausdorff distance dH, and median (Mdn) and
mean (M) values of the pointwise minimum
distance d(·) for the direction with larger supremum.

to the ones obtained for CNN-Reg whose validation loss
is deviating from and consistently higher than its training
loss.

To quantify these performance differences in terms
of geometric errors, Figure 3 presents the Pompeiu-
Hausdorff distance dH, cf. Equation (1), averaged over
all PPM test instances being parametrised as predicted
by CNN-Reg and Swin-XT. In addition, the mean (M)
and median (Mdn) values of the point-wise minimum
distances [4] for the direction containing the larger
supremum are shown. Being in line with the expectations
after having assessed the loss progressions, CNN-Reg
resulted in higher errors (M ± SD) compared to Swin-XT
in terms of dH (0.93±0.15 vs. 0.5±0.14), M(d(·)) (0.3±
0.03 vs. 0.1 ± 0.02), and Mdn(d(·)) (0.29 ± 0.03
vs. 0.08 ± 0.02). The results of three independent-
sample t-tests, conducted between each data pair per
metric type, indicated that the differences in means are
statistically significant, p < .001, suggesting a generally
better performance of Swin-XT. For both architectures,
the error magnitudes are substantially smaller than the
ones reported in previous studies when manually fitting
the same PPM to photogrammetrically obtained target
ears [4]. However, those target ears required adaptations
of all types of global and local PPM parameters, and
shape keys. Also, they did not match the PPM in number
of points and with regard to its basis shape. Thus,
a PPM registration involving limited parameter variations
and “matched” meshes, as in the current study, generally
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Figure 4: Renderings of the “worst” PPM test
instances as predicted (second row) and cross-
predicted (third row) by CNN-Reg (blue frames)
and Swin-XT (red frames) in comparison to the
respective target ears (first row).

represents a somewhat less challenging scenario. The fact
that the median values of dH, M(d(·)) and Mdn(d(·))
in both architectures are below 1mm given combined
PPM-parameter variations indicates a mesh representation
being likely accurate enough for the calculation of
personalised HRTFs that perceptually will not differ from
their target equivalents [5].

Finally, the worst-case predictions and their rendering
results were examined. For the determination of
the prediction with the lowest average accuracy per
architecture, i.e. the “worst” PPM test instance, we
selected the PPM test instance with the largest Mdn(d(·)).
Figure 4 visualises the rendering results. The first row

presents the rendered PPM target ears with color-coded
frames to indicate the affiliation to each architecture. The
second row shows the rendered PPMs as predicted by each
architecture. In the third row, the cross-prediction of one
architecture is shown provided the same MVPD images
of the PPM target instance presented to the respective
other architecture. Although the worst-case predictions
using CNN-Reg is generally quite accurate, it lacks
a detailed rendition of the pinna fine structure in
comparison to the worst-case prediction of Swin-XT. This
shortcoming can also be spotted in the cross predictions.
Only the Swin-XT architecture is capable of rendering
even the finest pinna details, which visually confirms
the particularly low validation loss, see Figure 2, and
geometric errors, see Figure 3. In comparison, CNN-Reg
results in spatially smoothed representations of the target
ears, which may partially be attributed to its reduced
generalisation capability, see Figure 2.

Overall, these results support the superiority of
the Swin-XT architecture and its effectiveness in applying
local attention mechanisms. However, it remains to be
shown to what extent the residual geometric errors
impact the objective and perceptual quality of the
correspondingly calculated HRTFs.

4. CONCLUSION

We presented a novel concept for indirect HRTF
personalisation in which a DNN is applied for
the prediction of an optimised parameter set from
MVPD images to parametrise a PPM which can be
used to numerically calculate personalised HRTFs. Two
fundamentally different DNN network architectures,
CNN-Reg and Swin-XT, with a matched number of
weights were trained based on synthetic MVPD images
obtained from randomly parametrised PPM instances,
featuring variations of local location parameters only.
A set of unknown synthetic MVPD images was used
to test the trained DNNs. In comparison to CNN-Reg,
the results of the evaluation in the geometric domain
revealed that the Swin-XT architecture showed superior
performance and was able to recreate pinna details of
unknown target ears more accurately. It is therefore
considered better suited for predicting the local location
parameters of the PPM.
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