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ABSTRACT

In this paper, we present a method for reconstructing the
sound field in a room using physics-informed neural net-
works. Our approach employs a limited set of room im-
pulse responses as training data for the network, while
also incorporating the fundamental physical principles of
sound propagation in space through the use of the wave
equation. This allows the network to not only learn the
underlying physics of sound propagation but also utilize
the nonlinear mapping capabilities of neural networks to
adjust for any inhomogeneities in the room and measure-
ment artifacts. Furthermore, the network can determine
particle velocity and intensity through the use of autodif-
ferentiation. The results indicate the effectiveness of the
approach in terms of reconstruction accuracy and compu-
tational efficiency. This work presents a promising ap-
proach for sound field reconstruction and has potential
for improving the representation of sound fields in vari-
ous acoustic settings, including rooms and other complex
environments, particularly for the synthesis of room im-
pulse responses.
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1. INTRODUCTION

The ability to accurately reconstruct a sound field in a
given environment is an important task with diverse ap-
plications. This includes spatial audio reproduction for
virtual and augmented reality systems [1, 2], sound field
control for reproducing coveted acoustic fields [3, 4] and
sound field analysis for acoustic environment character-
isation, design and optimization [5, 6]. These applica-
tions can further aid in the design and optimization of con-
cert halls, stadiums, office spaces, and other public spaces
where acoustics are a critical component of the listener’s
experience.

One approach commonly used for sound field recon-
struction involves the use of basis function expansions,
where the sound field is represented as a linear combi-
nation of predefined functions. These basis functions can
be spherical harmonics, plane waves, point and multipole
sources, wavelets, [7] or a combination thereof. [8] The
choice of basis function depends on the particular applica-
tion and the desired trade-offs between accuracy and com-
putational complexity. Recent literature has seen the use
of various techniques, including elementary wave super-
position, [5,9] room mode decomposition, [10,11] spheri-
cal harmonics decomposition, [6] and more recently, deep
learning models such as U-nets [12] or generative adver-
sarial networks (GANs). [13, 14]

Accurately representing the sound field in locations
where no measurements are available poses a significant
challenge in sound field reconstruction. To address this,
a variety of methods have been proposed, such as regu-
larisation techniques that impose sparsity constraints on
the reconstructed sound field, [5, 15] and machine learn-
ing approaches that leverage data-driven models to predict
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the sound field in unobserved locations. [12,13] Recently,
a class of models that interpret the heuristic decomposi-
tion of room impulse responses (RIRs) [8, 16] has shown
promising results in this task.

Deep learning techniques have recently gained sig-
nificant attention in sound field reconstruction and show
promise as a promising direction. Convolutional neu-
ral networks (CNNs) and generative adversarial networks
(GANs) are two types of deep learning models that can
learn complex relationships between input data (measure-
ments or samples of the sound field) and the output (re-
constructed sound field). These models are well-suited
for sound field reconstruction tasks that have complex re-
lationships between the measurements and the sound field,
often requiring prior knowledge of the room properties.

Both wave expansions and deep learning approaches
often rely on complex algorithms and can be computa-
tionally intensive, which limits their scalability and ap-
plicability to larger problems. A promising alternative
is the use of physics-informed neural networks (PINNs),
which are neural networks trained to solve partial differ-
ential equations (PDEs), such as the wave equation gov-
erning the propagation of sound waves in a given environ-
ment. By incorporating physical principles into the train-
ing process, PINNs can learn to accurately reconstruct
sound fields while also capturing the underlying physics
of the problem [17]. This makes them a promising candi-
date model for sound field reconstruction, as they offer im-
proved accuracy and computational efficiency compared
to traditional methods.

In this paper, we explore the use of PINNs for re-
constructing sound fields in various enclosures, including
acoustically challenging scenarios. We evaluate the per-
formance of PINNs on four datasets, each representing a
different type of enclosure and sound field configuration.
The results demonstrate the effectiveness of PINNs in ac-
curately reconstructing sound fields, with potential appli-
cations in a wide range of scenarios.

2. METHOD

2.1 Surrogate neural network for solving the wave
equation

Surrogate neural networks have become increasingly pop-
ular in the field of partial differential equations (PDEs)
due to their ability to handle high-dimensional input
spaces and approximate complex functions effectively.
These networks typically take in Cartesian coordinates

r = (x, y, z) and a time instance t as input, and produce an
output value representing the approximated eigenfunction
Φ(r, t) of the PDE at the corresponding coordinate within
a predefined domain Ωm. Their training involves fitting
the forward problem to ensure that the network accurately
predicts the function value at each input coordinate.

The neural networks fit the forward problem by sat-
isfying a set of K constraints represented by Ck, which
typically correspond to the PDEs being solved. This in-
volves finding the value of Φ(r, t) that satisfies the con-
straints for all coordinates r within each domain Ωk and
time instances t ∈R+. In practice, these surrogate models
are implemented as multi-layer perceptrons (MLPs) with
non-linear activation functions and trained using a vari-
ant of stochastic gradient descent algorithm [18]. In this
study, we employ sinusoidal activation functions for the
neural network, as they are effective universal approxima-
tors when initialized properly. Sinusoidal activations are
especially useful for modeling high frequency or periodic
data, or data structures that require higher-order spatial
derivatives, which other activation functions may not be
able to handle. [19]

During training, these networks minimize the sum of
constraints using the following loss function:

L =

∫
Ω

K∑
k=1

1Ωk
(r, t) |Ck(Φ(r, t),∇Φ(r, t), . . .)| drdt.

(1)
Here, 1Ωk

(r, t) is a binary mask that specifies the con-
straints Ck(·) that are applied to each point within the do-
main Ω. To sample points within the continuous space of
Ω, we evaluate the loss function at various points during
each iteration of the neural network training process.

Linear sound fields excited by a source can be de-
scribed by the inhomogeneous wave equation as [20]

∇2p(t, r)− 1

c2
∂2p(t, r)

∂t2
= δ(t, rs), (2)

where p(t, r) is the sound pressure as a function of time t
and space r and a speed of sound c. The excitation term
δ(t, rs) refers to the source at position rs. In a source-free
region, we can ommit the right hand side of Eq. 2.

This paper aims to reconstruct and estimate the sound
field p(r, t) of a room using a limited set of noisy measure-
ments represented by p̃ ∈ RNM of N time samples and
M measurements, so that p̃ = p + n, where n ∈ RNM

is additive measurement noise and p is the vector of the
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unknown sound field p(r, t) evaluated at the measured lo-
cations. To achieve this, we propose a physics-informed
neural network (PINN) approach that approximates the
function of pressure over time and space. The PINN is
trained to fit the measured pressure p̃(rm, tn) while ful-
filling the wave equation.

The network is represented as p•(r, t) = Wd ·
sin

(
Wd−1 · sin

(
· · · · sin

(
W1 · [r, t]

)) )
, where d

is the number of hidden layers and W1, . . . ,Wd are the
weight matrices. The pressure p•(r, t) refers to the pre-
dicted PINN pressure at position r and time t. The PINN
does not assume explicit initial conditions for the pres-
sure at time t0 = 0 s, as the model is source agnostic.
Furthermore, no boundary condition constraint is applied,
to minimize the effect of strict assumptions made on the
measurements. This leads to an objective function delin-
eated by

argmin
p•

∑
m∈M

∑
n∈N

|(p•(rm, tn)− p̃(rm, tn))|2

s.t.(
∇2 − 1

c2
∂2

∂t2

)
p•(r, t) = 0, ∀ r ∈ Ω, t ∈ R+,

(3)

where rm and tn refer to the positions and time instance of
the measured pressure in a room. The Laplacian ∇2 is ob-
tained via autodifferentiation, a method used to efficiently
calculate derivatives of functions, and is often associated
with the underlying mechanism for backpropagation, the
fundamental algorithm used in deep learning to train neu-
ral networks.

Once the network is trained, one can obtain the pres-
sure field p•(r, t) ∀r ∈ Ω, t ∈ R+ , as well as the particle
velocity with Euler’s equation

u•(r, t) = −1

ρ

∫ t

t0

∇p•(r, t)dt, (4)

where the pressure gradient ∇p•(r, t) is obtained with
first order auto-differentation. Finally one can obtain the
instantaneous intensity of the sound field in the domain as

I•(r, t) = u•(r, t)p•(r, t), (5)

allowing for the full characterisation of the measured
sound field.

2.2 Simulated data set

For testing the proposed physics-informed neural net-
work, we simulate a regular grid of room impulse re-
sponses with the method of image sources [21] by using
the pyroomacoustics python package [22]. The simulated
room is a ‘shoebox’ room with dimensions 6.2 × 4.8 ×
3.8 m3, with the receiver positions situated in the middle
of the room in a square grid of 1.2×1.2 m2 parallel to the
xy plane and situated at z = 1.9 m height, with a total of
36×36 = 1296 receiver positions. The source was placed
0.1 m from the wall parallel to the y−axis and at height
zs = 1.9 m (i.e. [0, 0.1, 1.9] m). A uniform absorption
was applied to the room boundaries in order to a acheive
an average reverberation time of T60 = 0.5 s, using the
simplification made in Sabine’s formula (T60 = 0.161V

A
where V is the room volume and A the total absorption
area) and the image source order was truncated to 13 to
limit the computational time. Finally we add white noise
scaled such that the the RIRs have a signal-to-noise ra-
tio of 35 dB. The simulated configuration can be seen in
Fig. 1. From the complete set of RIRs, we spatially sub-
sample each dimension in the xy plane in a near-uniform
manner, in order to retain 12× 12 = 144 RIRs to be used
for training the neural network, while the rest are used for
validation. This way we emulate the challenges associ-
ated with obtaining a large number of real measurements,
by employing a limited set of simulated RIRs. Conse-
quently the spacing between each receiver is dxy = 0.102
m for most reicever pairs and at most dxy = 0.137 m,
leading to a spatial Nyquist frequency of fNyq = 1667 Hz
and fNyq = 1250 Hz respectively. This implies that per-
fect reconstruction can be obtained with a sinc function
interpolation, up to the lower limit of the aforementioned
frequencies, while the reconstructions are subject to spa-
tial aliasing above this frequency. For the complete set of
RIRs, the Nyquist frequency surmounts to fNyq = 5000
Hz. Although neural networks typically require data to
be normalised within specific values, we found that the
magnitude of the synthesised data was within a reasonable
range, so this step was avoided.

2.3 Neural network architecture and training

For the PINN we use a multi-layer perceptron (MLP) net-
work which receives at its input the collocation points
(r, t) = (x, y, t), and is composed of 5 layers, each with
512 neurons and sinusoidal activation functions, apart
from the final layer which is composed of a single neuron
with a linear activation. The layers are initialised accord-
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Figure 1: Image source method room and source-
receiver configuration.

ingly for sinusoidal activation functions. [19] The network
uses an adaptive loss function in order to “learn” how to
balance the data and PDE terms in Eq. 3. [23] This loss
function can be written as

L(ε; θ;N) =
1

2ε2f
LPDE (θ;Nf ) +

1

2ε2d
Ldata (θ;Nd)

+ log εfεd,
(6)

with

LPDE (θ;Nf ) =
1

|Nf |

Nf∑
nf=1

∣∣f (
rnf

, tnf
; θ
)∣∣ ,

Ldata (θ;Ndata) =
1

|Nd|

Nd∑
nd=1

|p•(rnd
, tnd

)− p̃(rnd
, tnd

)| ,

(7)
where θ are the MLP parameters, Nf , Nd are the number
of collocation points where the PDE and data are evalu-
ated respectively. The parameters εf and εd are adaptive
weights which allow for the network to automatically as-
sign the weights of individual loss terms by updating these
parameters in each iteration based on maximum likelihood
estimation.

We use the Adam optimiser for both the adaptive
weights and the neural network parameters, with a learn-
ing rate of ηε = 2 · 10−4 and ηθ = 2 · 10−5 respec-
tively. The parameters regarding the number of colloca-
tion points for each loss term are set to Nf = Nd =
12000, with points selected uniformly in both space and
time for the PDE term, and the partial set of 144 RIRs at
random spatio-temporal time instances for the data term.
The training lasts for 10000 iterations on a single NVIDIA
V100 GPU, which takes about 4 hours.

2.4 Evaluating the network performance

For evaluation of the reconstructed RIRs we use Pearson’s
correlation coefficient defined as

ρ(r, t) =
E[p(r, t)p̂(r, t)]− E[p(r, t)]E[p̂(r, t)]√

E[p2(r, t)]E[p(r, t)]2
√

E[p̂2(r, t)]− E[p̂(r, t)]2
,

(8)
between any true (reference) p(r, t) and reconstructed
p̂(r, t) RIR on the reconstruction plane. This is a simple
measure, showing how the reconstructed room reflections
might covary with the experimental truth.

Furthermore, we find the root mean square error
(RMSE) a good measure of discrepancy between the ex-
perimental truth and the reconstructed RIR. This can be
defined by

RMSE =

√
E
[
(p(r, t)− p̂(r, t))

2
]

(9)

3. RESULTS

3.1 Sound field reconstruction

With the network trained, the reconstructed pressure is ob-
tained as a continuous function represented by the PINN.
Fig. 2 displays the measured pressure (training data), as
well as the ground truth and the reconstructed pressure in
snapshots for t = 14, 20, 24 and 33 ms. Since the simu-
lations assume an ideal low pass filter (ie. sinc function)
as a point source, ripples in the form of (phantom) wave
fronts can be observed in the domain when the delays
do not align perfectly with the discrete aperture. For the
most part the network ignores these equating them with
the noise floor, however it reconstructs the direct part of
the responses (t = 14 ms) along with an aliased wave su-
perimposed on the actual wave front. This is also evident
in the true sound field.

3.1.1 Sound field characterisation

The reconstructed particle velocity vector is shown in Fig.
3 for the same snapshots as the aforementioned pressure.
Since the velocity is proportional to the gradient of the
sound pressure, the high values (longer arrow heads) in-
dicate rapid spatial changes. However its estimation is
also quite prone to measurement noise and the epistemic
uncertainty of the strict domain bounds where the PINN
operates. The PINN seems to faithfully replicate these
abrupt changes in the medium, however, time t = 42 ms
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Figure 2: Pressure snapshots. From top to bottom: measured pressure, true pressure, reconstructed pressure
(normalised to unit magnitude)

shows the discontinuities in the wavefront affect the par-
ticle velocity estimation also, with the wave front arriving
from the top of the domain displaying erratic changes.
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Figure 3: Reconstructed particle velocity snapshots.

Similarly the intensity in Fig. 4 indicates the direc-
tion of propagation of wavefronts. At time t = 14 ms,
the snapshot displays a spherical spread and in snapshots
t = 20, 24 and 30 ms we see more planar waves. Some
of the wave fronts are not perfectly reconstructed, as be-
comes evident in t = 24 ms, since the aperture was placed
symmetrically in the room with respect to the source, so
both wavefronts should be almost identical. It seems that
the PINN might have a slight bias towards the bottom half
of the aperture, as the reconstructed fields are represented
more accurately there.
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Figure 4: Reconstructed instantaneous intensity
snapshots.

3.1.2 Evaluation

In order to carry out a comparison, we interpolate the
sound field with a simple sinc interpolation. At a in-
termicrophone spacing between dNyq = 0.102 m and
dNyq = 0.137 m, perfect reconstruction should be pos-
sible up to a frequency of fNyq = 1250 Hz, after which
spatial aliasing occurs. The responses are low-pass fil-
tered with a cut-off frequency of 4 kHz, well-beyond the
Nyquist rate. Figure 5 displays the pressure root mean
square error (RMSE) and correlation coefficient for the in-
terpolated pressure. Based on the evaluation, the error is
situated around -25 dB, while the correlation is below 0.3
for most of the interpolated sound field. In contrast, the
PINN RMSE and correlation displayed in Fig. 6 shows
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an RMSE of about -35 dB with most of the sound field
showing a degree of correlation of around 0.7.
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Figure 5: Sinc interpolated pressure RMSE and cor-
relation coefficent over aperture.

−0.50.00.5
x [m]

−0.50

−0.25

0.00

0.25

0.50

y
[m

]

−0.50.00.5
x [m]

y
[m

]

−40

−30

−20

R
M

S
er

ro
r(

dB
re

f1
Pa

)

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n

co
ef

fic
ie

nt

Figure 6: PINN pressure RMSE and correlation co-
efficent over reconstructed aperture.

4. DISCUSSION

Given that spatial aliasing can hinder the capabilities of
sound field control applications and sound field aurlisa-
tion algorithms among other funcionalities of microphone
array processing, a PINN seems to show substantial ca-
pabilities at “super-resolving” sound fields, while being
interpretable as a model to a certain degree. When com-
pared to a simple sinc interpolation, it is clearly notewor-
thy. It is able to reconstruct simulated sound fields which
emulate real-world conditions with limited resources and
subsequently, experimental data is scarce. Noteably, it is
able to fully characterise a sound field by reconstructing
pressure, particle velocity and intensity. Given that auto-
differentation is a fairly cheap operation, this becomes
attractive feature for most near-field acoustic holography
(NAH) also.

Furthermore, given that the training time is not ex-
tensive, it can easily be compared to other methods for
sound field reconstruction, with the benefit of represent-
ing a continuous pressure field rather than its discretised
form, allowing for a gridless reconstruction. This is quite

useful for real-time sound field aurilisation applications,
since inference time is negligible.

5. CONCLUSION

In this paper, we presented a novel approach for recon-
structing sound fields in a room using physics-informed
neural networks. The method shows promising results in
terms of reconstruction accuracy and computational ef-
ficiency, making it a valuable alternative to traditional
methods. By incorporating the fundamental physical prin-
ciples of sound propagation, the approach provides a good
understanding of deep learning models for physical pro-
cesses, which are often associated with black-boxes. Fur-
thermore, their is clear outlook on using a PINN with ex-
perimental data, for a broad range of applications where
the acoustic holography principle is used. Our work con-
tributes to the ongoing research on sound field reconstruc-
tion and has potential for improving the representation of
sound fields in various applications.
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