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ABSTRACT

Directional beams have broad applications in communica-
tion and sound reproduction. This paper investigates the
theoretical maximum directivity of an infinitely flanged
aperture of arbitrary cross-section by means of modal de-
composition. We derive a rigorous, algebraic, global max-
imum solution of the directivity factor, by which a direc-
tional beam in a desired direction can be created. As-
suming the aperture as the opening of a waveguide, we
construct a group of incident modes or a point-source ar-
ray within the waveguide for synthesizing the theoretical
beam obtained in a subspace spanned by all the propa-
gating modes. We elucidate that when the evanescent
modes are included in the maximization, the maximum
directivity factor increases with considerable loss to the
radiation efficiency. Nevertheless, in some cases, the op-
timum aperture velocity dominated by the lowest-order
evanescent components could still be useful for designing
metamaterial-lens horn antennas.

Keywords: directional acoustic radiation, maximum di-
rectivity, open-ended waveguide, radiation pattern syn-
thesis, acoustic horn antenna

1. INTRODUCTION

The directivity factor is a common metric to measure the
directivity from a source. Thus, directional beams can be
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Figure 1. Coordinate system for a flanged aper-
ture S. The radius vector r is given by (x, y, z) or
(r, θ, ϕ).

designed by performing design optimization with respect
to it. Apart from using numerical optimization algorithms,
rigorous and closed-form solutions of the maximum di-
rectivity factor have been studied for acoustic line source
arrays [1] and spherical arrays [2]. Acoustic waveguides
with super-directivity are of great practical significance.
However, the theoretical maximum directivity factor from
waveguides is still an open question. In this work, we in-
vestigate the maximum directivity of an infinitely flanged
aperture using modal expansion of the aperture velocity,
and then study the directivity pattern synthesis.

2. MAXIMUM DIRECTIVITY FACTOR AND
OPTIMAL BEAM PATTERN

Consider an aperture of arbitrary shape opened on an infi-
nite rigid baffle, as shown in Fig. 1. The far-field directiv-
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ity function can be expressed by the z component of the
aperture velocity [3]:

D(θ, ϕ) =
1

2π

∫∫
S

vz (x, y, 0) e
−i(kxx+kyy)dxdy, (1)

where kx = k sin θ cosϕ and ky = k sin θ sinϕ. To
couple the radiated field with the propagation within
the waveguide, the velocity is projected onto the rigid
waveguide modes (eigenmodes of the transverse Lapla-
cian with Neumann boundary condition), vz(x, y, 0) =∑∞

n=0 vnφn(x, y). Substituting this modal expansion into
Eq. (1) yields D(θ, ϕ) =

∑∞
n=0 vnΥn(θ, ϕ), where Υn is

the modal directivity function.
The directivity factor is defined as the ratio of the

intensity Ir in a specified direction to the intensity that
would be produced at the same position by a point source
radiating the same power W [4]:

Q(θ, ϕ) =
Ir(r, θ, ϕ)

W/2πr2
, (2)

which can be rewritten in a matrix form:

Q(θ, ϕ) = 2π
v†A∗(θ, ϕ)v

v†Cv
, (3)

where A = ΥΥ† is Hermitian and of rank one, and the
coupling matrix

C =

∫ 2π

0

dϕ

∫ π/2

0

ΥΥ† sin θdθ (4)

is Hermitian, positive definite, real, and non-singular. The
properties of matrices A and C guarantee that Eq. (3) is
a generalized Rayleigh quotient [5]. Therefore, Q has a
global maximum Qmax that is equal to 2πλmax, where
λmax is the largest eigenvalue of the generalized eigen-
value problem

A∗v = λCv, (5)

and the eigenvector vopt corresponding to λmax repre-
sents the optimum aperture velocity function vopt(x, y) =
vT
optφ(x, y). Besides, Eq. (5) has only one positive eigen-

value.
Solving the optimum velocity in the complete space

of square-integrable functions necessitates the incorpora-
tion of an infinite number of modes. It is reasonable to
consider the subspace consisting of all propagating modes
(eigenvalues γn ≤ k) at a given frequency. The following
is a case study of the maximum directivity for a typical
circular aperture.

(a) (b)

(c) (d)

Figure 2. (a) Comparison of Qmax(0) and Qpis. (b)
Optimum patterns for θd = 0◦ in the xz plane at sev-
eral frequencies. (c) Optimum directivity patterns in
the xz plane at k = 16 for different target directions
marked with dotted lines. (d) Three-dimensional op-
timal beam patterns steered in directions (30◦, 0◦)
and (60◦, 180◦) at k = 16.

First, the axial directivity factor (target angle θd = 0◦)
is maximized in the propagating modal subspace. It is
then compared with the directivity factor of a vibrating
piston. As shown in Fig. 2(a), the piston mode is a reason-
able guess for the optimum velocity. The optimum direc-
tivity patterns are shown in Fig. 2(b). Figs. 2(c) and 2(d)
show off-axis optimal beams. For small off-axis angles,
the beam is steered precisely to the desired direction, and
its main lobe exhibits good symmetry. However, near the
sideline directions, the main lobe slightly deviates from
the target angle and exhibits degraded symmetry.

3. BEAM PATTERN SYNTHESIS

3.1 Multimodal incidence

The theoretical optimal beams can be synthesized by a
group of incident modes. They are determined such that
the propagating components of the aperture velocity are
identical to vopt. Given the incident pressure field p+ at
the output (z = 0), the total velocity field is[

vopt

ve

]
= Yc (I− R)p+, (6)
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Figure 3. (a) Comparison of Qmax and Qsyn. (b)
Comparison of the theoretical and synthesized pat-
terns for (30◦, 0◦) and (60◦, 180◦) at k = 16 in xz
plane [corresponding to Fig. 2(c)]. (c) Real part (left)
and magnitude (right) of the pressure field in the xz
plane generated by incident propagating modes for
the directivity synthesis in (30◦, 0◦) at k = 16, com-
puted by the PML-multimodal method [6].

where Yc is the characteristic admittance matrix, which is
diagonal with elements

√
k2 − γ2

n/k,

R = (I+ ZrYc)
−1

(ZrYc − I) (7)

is the reflection matrix, Zr is the radiation impedance ma-
trix, and ve is the evanescent velocity field (truncated at
length Ne for computation). By blocking matrices Yc and
(I−R) according to the dimensions of vopt and ve, Eq. (6)
can be rewritten as[

vopt

ve

]
=

[
Yc,1 O
O Yc,2

] [
B1 B2

B3 B4

] [
p̂+

0

]
, (8)

where p̂+ represents the first Np propagating components
of p+ (the evanescent components of the incident field are
assumed to be zero at the output). The unknowns p̂+ and
ve can then be solved as

p̂+ = B−1
1 Y−1

c,1vopt, (9)
ve = Yc,2B3p̂+. (10)

The reflection at the duct end generates evanescent
waves, which will cause the synthesized beam to deviate

from the theoretical one. Fig. 3 shows good agreement
between the theoretical and synthesized directivity factors
and beams. A directional beam with a near-planar wave-
front can be observed in the near field with regularly dis-
tributed sidelobes.

3.2 Point-source array

Next, we present the beam pattern synthesis by an array
of point sources, rather than the more theoretical multi-
modal incident wave. For simplicity, the problem is stud-
ied in a bidimensional waveguide. We consider a linear
arrangement of point sources located on a transversal line
upstream from the opening, far enough to ensure that all
the evanescent waves emitted by the sources are negli-
gible at the opening. From the modal representation of
the Green’s function in the waveguide, we reconstruct p+

by determining the locations and strengths of Np point
sources:

Np−1∑
m=0

kQm
φn(xm)

−2ikz,n
eikz,n|zs| = p̂+,n, 0 ≤ n ≤ Np − 1,

(11)
where kz,n =

√
k2 − γ2

n is the axial wavenumber,
(xm, zs) and Qm are respectively the coordinates and un-
known complex strength of the mth source. We have
found that the system is well-conditioned if the sources
are equally spaced. The field emitted by the point sources
is visualized with the PML-multimodal method [6], as
shown in Fig. 4(b). For verification purposes, they have
also been validated by the finite element method (FEM)
using (xm, zs, Qm) as model inputs.

4. EFFECTS OF EVANESCENT MODES

This section examines the effects of incorporating the
evanescent modes into the directivity maximization. We
recall the definition of the radiation efficiency of a given
velocity distribution v(x, y) on the aperture S [3, 7, 8]:

τ =
W

1
2

∫∫
S

|v(x, y)|2dS
. (12)

The maximization is now solved in a subspace
spanned by all propagating modes plus at least one evanes-
cent mode. We have observed a dramatic reduction in the
radiation efficiency, accompanied with a rapid increase in
the weight of evanescent components even for small Ne.
Fig. 5 exemplifies the optimum directivity patterns for a
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Figure 4. Pressure fields near the aperture for the radiation pattern synthesis. θd = 30◦, k = 30. (a) Multimodal
incidence, ∥p+∥=1. (b) Point sources. (c) FEM validation of (b).

Figure 5. Optimal directivity patterns involving the
evanescent modes. k = 0.5π and 9.5π.

bidimensional waveguide obtained with Ne ≤ 3 (plot-
ted for ∥vopt∥ = 1). As the sound intensity Ir(r, θ) ∝
|D(θ)|2 at given radial distance and frequency, a decrease
in the radiated efficiency is manifested by the “shrinking”
of the directivity patterns. Nevertheless, in the extreme
case of θd = 90◦, for Ne = 1, the assistance of this first
evanescent mode (orange line) does not significantly re-
duce the intensity compared to the pattern for Ne = 0
(blue line) but in turn steers the main lobe precisely into
the desired sideline direction. However, the optimal ve-
locity is dominated by its evanescent components with a
weight of 0.85. Although its implementation is difficult in
hollow waveguides, it could be possible when the waveg-
uide end is filled with structured media through which
evanescent modes can be effectively emitted.

5. CONCLUSIONS

A rigorous formulation of the maximum directivity factor
for a flanged aperture is proposed, by which an optimal di-
rectional beam can be created. It is reasonable to discard
the evanescent modes in the maximization process so that
the optimum velocity distribution exhibits adequate radi-
ation efficiency and is physically achievable via hollow
horns.
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