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ABSTRACT

Previous models for the synthesis of free-reed instru-
ment sounds have considered the oscillating free reed as
a damped spring-mass system. Our recent experiments
to study the reed motion using a laser vibrometer suggest
that the oscillating reed shows harmonics which are more
prominent at higher excitation pressures. To better char-
acterize this behavior, we present a distributed model of
the free reed using a fourth-order partial differential equa-
tion where the reed is modeled as a uniform bar, clamped
at one end. A numerical scheme is developed for the time
domain simulation of the reed motion and the air flow.
The spectral characteristics of the simulated reed motion
are studied and agreement with the experimental measure-
ments is discussed.

Keywords: free reed acoustics, distributed reed model,
musical acoustics, laser vibrometer

1. INTRODUCTION

Western free reed instruments such as the harmonium, the
accordion and the harmonica are a relatively new category
of musical instruments having originated in Europe in the
19th century. Cottingham [1] has described the sound pro-
duction mechanism in free reed instruments and reviewed
the prominent acoustic studies of this category of musical
instruments.

Self-sustained oscillations can be set up in reeds if an
unsteady pressure difference can be developed between
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the two sides of the reed. As the reed oscillates, the aper-
ture area changes, leading to velocity fluctuations in the
air flow through the reed. The velocity-dependent pres-
sure changes can be found using the Bernoulli equation.
However, this mechanism in isolation cannot develop the
asymmetric pressure differences required to set up self-
oscillations [2]. In highly damped reeds with strong cou-
pling with the resonator as in the case of a clarinet, the
pressure asymmetry is provided by the acoustic response
of resonator, forcing the reeds to oscillate near the funda-
mental modes of the resonator. Free reeds in contrast are
lightly damped and tend to oscillate close to their natural
frequencies.

St. Hilaire [3] first proposed that the inertial effect of
the upstream air flow was the primary mechanism to set up
self-oscillations in free reeds. Since the air flow in the reed
happens through a narrow jet, there is much less mass in
the jet as compared to the upstream section. As a result the
pressure near the reed changes rapidly as compared to the
upstream pressure. St. Hilaire’s model showed that there
was a component of the pressure near the reed changing
in phase with the reed velocity, thus leading to a net pos-
itive power transfer to the reed. Experimental studies by
Tarnopolsky [4, 5] and Ricot [6] agree with the upstream
inertial effect theory proposed by St. Hilaire.

Further studies by St. Hilaire [7,8] have described the
nonlinear mechanism which leads to a limiting amplitude
for the reed oscillations and the presence of harmonics in
the sound generated.

Millot and Baumann [9] provided a minimal model
for the synthesis of any free reed instrument. They also
described a numerical scheme to solve the system in real
time and presented a discussion on the stability of the nu-
merical scheme and the dependence of the playing fre-
quency (pitch) and loudness of the synthesized sound.

In a previous work [10], the authors made suitable
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adaptations to the Millot-Baumann model to match the
playing parameters and timbre of an Indian harmonium
with hand bellows. The main feature of this model was
the use of a source-filter structure for the synthesis. The
source was modeled as 1D physics-based model of a
free reed interacting with the air flow. The effect of the
wooden enclosure of the instrument was approximated by
an all-pole filter whose coefficients were estimated from
a recorded harmonium sound. The model assumed the
reed to be a sinusoidally oscillating lumped mass-spring-
damper whose behavior is predominantly governed by the
eigenfrequency and the quality factor parameters.

Subsequently, experiments were conducted with a
laser vibrometer to study the motion of free reeds mounted
on a mechanical blower. The experimental measure-
ments suggested that reed undergoes transverse oscilla-
tions which show harmonics, especially when the reed is
excited with a higher pressure. With an aim to character-
ize this behavior, we developed a 1D distributed model of
the free reed modeled as a Euler-Bernoulli beam.

Section 2 describes the results from the laser vibrom-
eter experiments. Section 3 describes the clamped bar
model and numerical scheme implemented. In section 4,
we discuss the agreement of the clamped bar model with
the measurements and possible improvements.

2. LASER DOPPLER VIBROMETER
MEASUREMENTS

The motion of a B5 (990 Hz) harmonium reed was stud-
ied using a Laser Doppler Vibrometer (LDV). For this
purpose, a slot to hold the reed was 3D printed and was
mounted on a mechanical blower assembly made from
aluminum and fiber glass. Observations were recorded
while air was blown into the mechanical blower through
a pipe by mouth with different pressure patterns that were
sufficient to produce a loud sound from the reed. The laser
beam from a Polytec PDV-100 vibrometer was focused at
a point closer to the base (shown in Fig. 2). The focus-
ing point was chosen such that the range of the vibration
velocities observed was within the measurement range of
the LDV (±0.5m/s). The pressure inside the mechani-
cal blower was simultaneously measured using a pressure
transducer (Endevco 8510B) and signal amplifier (Ende-
vco Model 136). To record the vibration velocity and
pressure signals a National Instruments USB-4431 Sig-
nal Acquisition Board was used. Fig. 1 shows the assem-
bly used during the measurements. From our previous ex-
periments, it was known that the reed chamber pressures

Figure 1: Assembly for Laser Vibrometer measure-
ments.

in a real harmonium are in the range of 0.2 − 1.5 kPa.
A similar range of mouth pressures was observed in the
measurements using the mechanical blower. Significant
observations from the velocity measurements by the LDV
are discussed next.

In Fig. 3 and Fig. 4 respectively, the log-magnitude
spectrogram of the reed velocity and the corresponding
mouth blowing pressure for a reading are presented. Dur-
ing this reading, the blowing pressure was initially low so
that the sound produced by the reed was barely audible.
The reed was then blown as strongly as possible to pro-
duce a loud sound. It can be seen that at lower blowing
pressures (≈ 0.2 kPa) the motion of the reed is largely si-
nusoidal while the higher harmonic components become
more prominent at the higher blowing pressures (1.4-1.6
kPa).

3. CLAMPED BAR MODEL

In previous work [10], the Millot and Baumann minimal
model [9] was adapted to provide a better match for the
playing parameters and the timbre of an Indian hand har-
monium. While our lumped model produced quite con-
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Figure 2: Harmonium reed attached to a 3D printed
mount with a slot. Point of focus for the laser is
shown

vincing synthesis, some model parameters had to assume
unrealistic values for a numerically stable synthesis. For
example, the thickness of the reed would be several times
that of its length and its width. In the synthesis using
this model, the reed practically had a sinusoidal motion.
Hence, the peculiar spectral properties observed experi-
mentally and described in Section 2 were not observed in
the synthesis.

To address these issues, a 1D distributed model of
the reed was attempted. A distributed reed modeling ap-
proach has been previously adopted by Stewart and Strong
[11] and Avanzini and Walstijn [12] for modeling clar-
inet reeds. Sommerfeldt and Strong [13] used the model
from [11] to develop a time domain player-clarinet simu-
lation system. These approaches modeled the reed as an
Euler-Bernoulli beam fixed at one end free to move at the
other, which is also the approach that we used.

3.1 Model description

Fig. 5 shows a schematic representation of the configura-
tion of the lumped physical model used to simulate the
harmonium free-reed in [10]. The model assumes the re-
gion upstream of the reed (i.e. the reed chamber) to be a
large volume V1 where the pressure p1 is uniform. The
volume V2, with cross-sectional area S2 and length L2,
models the region near the reed that supplies air to the

Figure 3: Log-magnitude spectrogram for reed ve-
locity in an LDV measurement. Higher harmonics
are prominent at higher blowing pressure.

reed. The reed itself was modeled as a sinusoidally os-
cillating lumped mass-spring-damper whose behavior is
predominantly governed by the eigenfrequency (ω0) and
the quality factor (Q) parameters. The region downstream
from the reed is exposed to atmospheric pressure. In the
original Millot-Baumann model [9], the system was ex-
cited by the volume flow u0 entering the volume V1. In
our adaptation, however, we added the chamber with pres-
sure p0 to represent the bellows pressure which indirectly
controls the excitation signal u0. This change led to a
better agreement between experimentally measured reed-
chamber pressures and the corresponding p1 values in the
synthesis. It also allowed for the use of bellows pressure
as a parameter to control the sound produced, like in a real
harmonium.

The governing equations for the lumped physical
model of the reed from [9, 10] are as follows:

• Mass conservation for volume V1

V1

c20
· d(p1 − patm)

dt
= ρair(u0 − u) (1)

• Dynamic Bernoulli equation for volume V2

p1 = p2 + ρair ·
L2

S2
· du
dt

(2)

• Bernoulli equation for the upstream and down-
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Figure 4: Blowing pressure during the reed velocity
measurement in Fig. 3

Figure 5: Configuration of the lumped physical
model used in [10].

stream of the reed

p2 = patm +
1

2
ρairv

2
j (3)

• Equation of the reed motion as a lumped mass-
spring-damper

d2ζ

dt2
+Q−1ω0

dζ

dt
+ ω2

0ζ = µ(p2 − patm) (4)

• Total volume flow rate as the sum of jet flow and
pumped flow due to reed motion

u = Sr ·
dζ

dt
+ αSuvj (5)

where,
ζ : displacement of reed from equilibrium position

α : Factor to account for vena-contracta and the
additional aperture area from the sides of the reed

Su : useful area of the reed aperture
= Wreed ·

√
(y +∆y)2 + h2, ∆y being the initial

gap between the reed tip and the support plate
Sr : area of the reed
µ : coefficient dependent on the area and the mass of

the reed
c : speed of sound in air
vj : particle velocity in air jet
ρair : air density
ω0 : eigenfrequency of the lumped reed
Q : quality factor
u : Volume flow rate of air escaping through the reed

aperture

For the distributed model, we replaced the lumped
reed equation (Eq. 4) from the system of equations with
the dynamic Euler-Bernoulli beam equation given by:

ρrAr
δ2y

δt2
+R

δy

δt
+ EI

δ4y

δx4
= Sr · (p2 − patm) (6)

where,
y : displacement of reed
ρr : density of the reed
Ar : cross section area of the reed
R : damping parameter
E : Modulus of elasticity (Young’s Modulus)
I : Bending Moment of inertia

For simplicity, the reed was assumed to have a
uniform width and thickness across its length. While
Avanzini and Walstijn also included material damping
terms in [12], we chose to neglect them since it is known
the brass reeds used in harmonium are lightly damped un-
like the cane reeds of a clarinet.

The clamped-free boundary condition was imposed
by the constraints:

y(0, t) =
δy

δx
(0, t) =

δ2y

δx2
(Lreed, t) =

δ3y

δx3
(Lreed, t) = 0

(7)

3.2 Numerical Simulation

To numerically solve the reed equation (Eq. 6), the im-
plicit scheme described by Chaigne and Doutaut [14] and
adopted by Avanzini and Walstijn [12] was used. The reed
displacement at the current time step was calculated on
the basis of reed pressure p2 at the previous time step. To
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Table 1: Parameters used for the simulations.

Young’s modulus E = 125 GPa
Length of reed Lreed = 16 mm
Width of reed Wreed = 2 mm
Thickness of reed treed = 0.4 mm
Damping parameter R = 0.065

Reed chamber volume V1 = 0.0013 m3

Length of near-field
region L2 = 50mm

C.S. Area of
near-field region S2 = 6.4× 10−5 m2

Density of air ρair = 1.1769 kg/m3

Density of reed ρr = 8490 kg/m3

Initial gap between
reed tip and support ∆y = −0.1 mm

discretize the rest of the equations (Eqs. 1, 2, 3, 5) the
derivatives were replaced by a backward finite difference.
A time sampling rate of 4× 44100 Hz was used while the
reed was approximated as a grid with N = 40 sections.
Similar to Avanzini and Walstijn [12], convergence of the
numerical solution was verified for the discretization pa-
rameters. A higher number of grid points were not found
to appreciably change the the solution. The other param-
eters used for the simulation are listed in Table 1. The
system of equations was solved using a Newton-Raphson
scheme described by Millot in [9].

4. RESULTS AND DISCUSSION

The time-domain waveforms of the reed velocity growth
observed in the vibrometer measurement and in a
clamped-bar model simulation with bellows pressure of
250 Pa are shown in Fig. 6 and Fig. 7 respectively. It can
be verified that the initial exponential growth and the at-
tainment of a limiting amplitude observed experimentally
is also present in the clamped-bar model simulation.

The spectrograms of the reed velocities obtained in
the simulations with low (250 Pa) and high (1650 Pa)
bellows pressures are shown in Fig. 8 and Fig. 9 respec-
tively. The figures confirm that in the simulation, the reed
exhibits predominantly sinusoidal motion at low bellows
pressures while the presence of higher harmonics is ap-

Figure 6: Waveform of reed velocity measured by
vibrometer at mouth pressure ≈ 200-250 Pa.

parent at high bellows pressures. In this aspect, the simu-
lation has a good agreement with the measured data.

Fig. 10 shows a comparison of the normalized Long
Term Average Spectrums (LTAS) of the measured reed
velocity and with the reed velocity in a simulation with
high excitation pressures. The magenta curve shows the
normalized LTAS of the reed velocity in a simulation of
the reed excited with an impulse. The reed response in
the simulation (blue curve) shows a formant like struc-
ture with stronger peaks near the natural frequencies of
the reed. This suggests that the effect of the reed could
be to filter the driving signal, i.e. the reed pressure (p2).
The reed pressure (p2) that drives the reed has a har-
monic spectrum due to the non-linear flow mechanism
described in equation 3. The reed response in the mea-
surement (cyan curve) has stronger peaks near the fun-
damental (≈ 990Hz) and the third natural frequency
(≈ 16000Hz). However, a clear formant is not visible at
the second natural frequency (≈ 6000Hz). This deviation
could be caused due to a combination of multiple factors.
The real reed has some non-uniformity in its thickness but
the simulation assumes a uniform reed. There could be
other vibrational modes such as the torsional modes [15]
that are significant at the operating conditions. The de-
viation can also be caused by differences in the real and
simulated reed pressure which drives the reed.

An additional positive outcome of using the dis-
tributed model is that it leads to the fundamental fre-
quency being determined by the measured geometric
properties (length, width and thickness) and the material
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Figure 7: Waveform of reed tip velocity in clamped-
bar model simulation with bellows pressure of 250
Pa.

properties of the reed in contrast with the lumped model
which uses rather unrealistic parameters. However, the
model still uses arbitrary parameters for the dimensions
of the far field (volume V1) and the near field (area S2 and
length L2).

5. CONCLUSION

A clamped bar model for free reeds is presented. The
model provides a significant refinement over the lumped
mass-spring-damper models used previously. Experimen-
tally observed spectral characteristics of the free reed
closely resemble the spectral characteristics in the sim-
ulations with the clamped bar model. As in a real free
reed, the playing frequency in the clamped model is deter-
mined by the measured geometric properties instead of an
arbitrarily specified eigenfrequency in the lumped mod-
els. Further refinements to the clamped model are possi-
ble by assuming a reed with non-uniform thickness and
including other vibrational modes. The flow model could
be further improved to reduce the arbitrariness in the as-
sumptions of the near and far field dimensions.
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Figure 8: Spectrogram for reed velocity simulation
with bellows pressure of 250 Pa.

Figure 9: Spectrogram for reed velocity simulation
with bellows pressure of 1650 Pa.
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