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ABSTRACT

Road traffic noise calculations require modeling the traf-
fic flow in a road network. The reliability of these calcula-
tions can be improved with accurate estimation of the traf-
fic flow, including estimation of its temporal variations.
Low-cost noise sensors that run on single-board comput-
ers in a noise monitoring network are suitable candidates
to simultaneously estimate the local temporal traffic flow
from their pass-by measurements, using an on-board traf-
fic flow estimator model. Aside from this model requiring
to be computationally efficient, it should also be robust,
e.g., invariant to sensor position relative to the source,
weather conditions, etc. With noise measurements as an
input, different noise features and prediction models are
tested for vehicle detection. The accuracy of these models
is evaluated using traffic count data obtained from ded-
icated vehicle-counting infrastructure at the locations of
the noise sensors. The analysis is restricted to sparse traf-
fic conditions in this initial study.
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1. INTRODUCTION

Urban noise pollution may be assessed through direct
noise measurements, or noise propagation simulations [1].
Noise measurements provide accurate assessment of the
noise levels, but are limited in their spatial resolution. On
the other hand, noise simulations enable assessment over
wider areas, but their accuracy is dependent on the propa-
gation models and their input data.

The reliable estimation of the traffic flow rate directly
influences the reliability of the noise propagation output,
since the noise source strength is proportional to the flow
rates. An accurate estimation of traffic flow is of partic-
ular importance during sparse traffic and low background
noise, because the transient nature of noise from individ-
ual vehicles is more significant in sparse traffic. It is there-
fore of value to obtain reliable estimates of traffic flow
rates, with high temporal resolution during sparse traffic.

A methodology to improve the assessment of traf-
fic flow rates, and the subsequent noise simulations, is
through the use of low-cost noise sensors as sources of
local traffic counts. These traffic flow parameters can then
be used as inputs to traffic simulation models, which in
turn support noise simulation models. The same sensors
can also provide noise level measurements, which is their
primary purpose, that can be used to validate the output
of the simulations. Doing so makes the sensor useful
in both the upstream (input to traffic-simulation models)
and downstream (validation of noise-simulation models)
of the noise assessment methodology.

This paper seeks to present vehicle detection models
that use data from the noise sensors for estimation of traf-
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fic flow parameters. The noise sensors are part of a local
noise sensor network in Stockholm, Sweden. The scope
is here initially restricted to sparse traffic conditions, i.e.,
there is no overlap in the pass-by of adjacent vehicles.
Furthermore, the noise data is complemented by weak
labels in the form of approximate timestamps of vehicle
pass-by detection, obtained from a traffic sensor adjacent
to the noise sensor.

2. CASE STUDY

A section of a highly-trafficked road in Central Stock-
holm, Hornsgatan, was chosen as the test-bed for devel-
opment of the vehicle detection models. Noise sensors
were installed at four locations that were positioned either
directly beside the road section, or close to it. These lo-
cations are shown in Fig. 1. Two of these four locations
also included a traffic sensor. The exact locations of the
sensors were constrained by the availability of power and
internet infrastructure.

Figure 1. Test-bed along Hornsgatan highlighted
in blue, along with location of four noise sensors
marked by concentric circles. The two sensors on
the right side of the map also included a traffic sensor.
Background map obtained from OpenStreenMap [2].

2.1 Sensor infrastructure

Each noise sensor was equipped with a miniDSP Umik-
1 [3], a 6 mm electret omni-directional USB measurement
microphone. The noise data was measured and processed
by a Raspberry Pi Model 3B single-board computer.

Each traffic sensor was equipped with a designated
radar sensor for each lane at that location. The sensors
for the two lane directions were installed on opposite sites
of the road. Each sensor provided a timestamp when a
vehicle passes a particular section of the lane.

The installation of the traffic and noise sensors was
carried out under the constraints of available mounting
points. Therefore, the particular section of the lane that
each radar sensor monitored was neither side-by-side to
each other, nor to the section of the road closest to the
noise sensor. Therefore, the timestamps from the radar
sensors were at a lane-specific offset to the noise peak of
the vehicle pass-by. Therefore, the radar sensors provided
an approximate timestamp of the vehicle pass-by with re-
spect to the noise sensor data at that location.

2.2 Sparse traffic

The focus of this paper was restricted to sparse traffic con-
ditions. Sparse traffic in this paper was defined as traffic
conditions where the distance between two successive ve-
hicles on a road was large enough that there would be no
or negligible overlap in their impact on the road and noise
sensor data.

The availability of road sensor data enabled identify-
ing time periods where such sparse conditions exist. In
this paper, a minimum duration of 20 seconds between
two radar-detected vehicles was required for the prevail-
ing traffic conditions to be considered sparse.

3. METHOD

A vehicle detection model is developed for identifying ve-
hicle pass-by from noise measurements during sparse traf-
fic conditions, taken at a noise sensor adjacent to a road.
The model is trained to predict strong labels for a vehi-
cle pass-by, i.e., timestamps denoting the start and stop of
the pass-by event. Along with the noise measurement, the
training data also includes weak labels, i.e., approximate
timestamps of a vehicle pass-by, obtained from a traffic
sensor.

The development of the vehicle detection model is
composed of two parts:

1. Generation of strong labels

2. Prediction of strong labels

The noise measurements from the sensors are con-
verted into spectrograms. These spectrograms are pro-
cessed further to obtain other noise features; see Section
3.1. An unsupervised classification technique is used for
converting the weak labels into strong labels; see Section
3.2. Lastly, the noise features along with the generated
strong labels are used as training data for a supervised
classification technique, described in Section 3.3. This
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classifier is then used to predict the onset and offset of
a vehicle pass-by from an input noise measurement, and
the output is presented in Section 4.

3.1 Feature extraction

The time-domain noise measurements from the noise sen-
sor, taken at a sampling frequency of 22050 Hz, are con-
verted to frequency-domain absolute-magnitude spectro-
grams with a frequency resolution of about 5.4 Hz.

The spectrogram, and multiple features extracted
from it are tested as possible input candidates for the
vehicle-detection model. In the presented assessment,
the log-mel spectrogram and the Mel-frequency cepstrum
coefficients (MFCCs) are evaluated and used as features
to represent the noise measurements. The noise data is
converted to log-mel spectrograms with 64 bands, and
MFCCs up to the 13th coefficient. These features are cho-
sen because of their known ability to effectively differenti-
ate and recognize audio based on physiological character-
istics of the human ear [4]. Although other features may
be more relevant for vehicle generated noise, the model
presented in this paper uses these features as a preliminary
input to the detection model, making it possible for fu-
ture work to implement and test more advanced features.
For the sake of clarity, only the results from using the 13
MFCCs are presented.

3.2 Strong label generation

The weak labels from the traffic radar sensor are con-
verted to strong labels using the k-means classification
technique. The weak labels, being approximate times-
tamps of a vehicle pass-by, are used as a mid-point for
extracting a relevant section of the noise features from the
entire noise measurement dataset. An offset of 15 sec-
onds about this mid-point (i.e., a 30-second duration win-
dow) is defined, in order to include data corresponding
to when noise from the vehicle pass-by is clearly absent.
Note that only sparse vehicle events are chosen as input
for this model, i.e., in each window there is only one ve-
hicle present.

Each time-step in the window is then classified using
a k-means classifier into one of 3 possible clusters, with
classification based on its features, i.e., the 13 MFCCs
calculated for each time-step. The choice to cluster us-
ing three clusters is chosen after a process of trial-and-
error. Using only 2 clusters is found to be insufficient
to capture the vehicle pass-by, likely because noise from

other sources prevents the clustering algorithm from clus-
tering the pass-by time events under a single cluster. Us-
ing more than 3 clusters results in identifying spurious
events, therefore adding an additional challenge of identi-
fying the right cluster that corresponds to the real pass-by
event.

The resulting clusters are low-pass filtered across the
time domain to divide the measurement window into con-
tinuous clusters. A low-pass filter is required because the
cluster labels rapidly fluctuate around the time of vehicle
onset and offset. The low-pass filter removes these oscil-
lations, allowing for a more realistic segmentation of the
measurement window.

Finally, the dominant cluster in the middle of the win-
dow is identified as the cluster containing the pass-by, and
the boundaries of this cluster yield the strong labels for
this vehicle pass-by event. Note that the weak label need
not necessarily be contained within the strong label, as the
purpose of this weak label is only to serve as a mid-point
for the noise data window. An example of the resulting
strong label for one such window is shown in Fig. 2.

The strong label defines a time window that begins at
the vehicle onset and ends at the vehicle offset. Since this
label is defined as the boundary of a cluster, a definition of
a vehicle pass-by based on changes in sound levels is not
explicitly required.

3.3 Event onset and offset prediction

A random forest classifier is used for predicting the strong
labels for a given noise measurement. This classifier is
trained on the noise features of a measurement window
used to generate the strong labels (as described in Sec-
tion 3.2). The random forest is trained using 500 trees,
and uses bootstrapping. The features for each time-step
is individually classified by the trained classifier as either
inside a pass-by event or outside. The predictions are then
processed through a low-pass filter, like in the case of the
strong label generator in Section 3.2, to obtain the final
predictions of onset and offset.

The accuracy of these predictions is assessed using a
10-fold cross validation between the predictions and the
generated labels. Two kinds of methods are applied to
calculate these metrics: frame-by-frame and collar-based.
The frame-by-frame method compares the predicted and
the generated label one time-step at a time. On the other
hand, the collar-based method [5] allows for the predicted
and the generated strong label of an entire pass-by event
to pass only if the predicted onset is within 1 second of the
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generated onset, and the predicted offset is within a collar
around the generated offset. This collar around the offset
is taken as 50% of the generated label’s total duration.

Predictions from a trained classifier are shown in
Fig. 3 for a single case, and Fig. 4 for all cases combined.
A prediction for a pass-by event is obtained using a model
trained on 90% of the entire data set, and this training set
excludes the measurement that is to be predicted.

4. PRELIMINARY RESULTS

The strong label generator and predictor models are
trained on data from sparse traffic, obtained over a 24-
hour period from a location in Fig. 1 having both a noise
sensor and traffic radar sensor. On this chosen 24-hour pe-
riod, a total of 20, 681 vehicles were counted by the radar
sensors on the four lanes. The requirements for sparse
traffic conditions, i.e., at least 20 seconds between two
consecutive vehicles, reduces the number of sparse events
to about 0.8% of the total. Noise measurements for the re-
maining 143 vehicle pass-by events, obtained using weak
labels from the radar sensor, are used for generating the
following results.

4.1 Strong label generation

In Fig. 2 is an example of the output from the strong label
generator described in Section 3.2.

Figure 2. Example of output from the strong la-
bel generator. Label generator trained on 13 MFCCs
from each time-step of the noise data window.

The noise data window is represented using the first
MFCC, which correlates to the total energy in the signal at
that time-step. The weak label is the approximate times-
tamp of vehicle pass-by obtained from the traffic radar
sensor. The strong label is the onset and offset timestamp
of a vehicle pass-by, represented as a shaded region of the
noise data window.

The strong label in Fig. 2 contains the vehicle pass-
by peak, represented through the first MFCC, and is about

5.9 seconds in duration (within the 30 seconds window
duration).

Strong labels are generated for the 143 pass-by events.
Out of these, 5% of the measurements did not produce
labels that are realistic, since the pass-by is detected at the
edges of the measurement instead of at the center. The
remaining 135 strong labels are shown in Fig. 4.

4.2 Strong label prediction

In Fig. 3 is an example of the output from a trained strong
label predictor described in Section 3.3. This predictor
is trained using a training-set, and an example from the
testing-set is presented in Fig. 3. The strong label predic-
tions for all the pass-by events considered are shown in
Fig. 3.

Figure 3. Example of output from the strong la-
bel predictor. Predictor trained on MFCCs from the
noise data training-set. Expected (in grey) and pre-
dicted (in purple) strong labels shown for a represen-
tative noise data window

Figure 4. Generated (in grey) and predicted (in pur-
ple) strong labels for all sparse traffic pass-by events
considered in a 24-hour period. Each column cor-
responds to a single pass-by event, and the colored
bars annotate the generated and the predicted strong
labels, with an overlap denoting a measurement win-
dow in which a vehicle pass-by is identified by both
the generated and the predicted labels

In Fig. 3, similar to Fig. 2, the first MFCC is used
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to represent the energy in the noise signal under consid-
eration. Two strong labels are presented in Fig. 3. The
predicted strong label, highlighted in purple, is the out-
put of this model, when given as input the MFCCs corre-
sponding to this particular noise data window. The gen-
erated strong label, highlighted in grey, is obtained from
the strong label generator (Section 3.2), and is used for
testing the accuracy of the predicted label. The predicted
label is shorter in duration but corresponds well with the
generated label, overlapping by about 90% with the latter.
The predicted and generated labels correspond to a dura-
tion of about 6.7 seconds and 7.4 seconds, respectively,
within the 30 seconds window duration.

In Fig. 4, the generated and the predicted labels for
the 135 pass-by events are shown. Out of the 135, only
125 labels are shown because the predictor failed to iden-
tify a pass-by event for 10 of the cases.

A 10-fold cross validation of the predicted and gen-
erated strong labels from the 135 pass-by events yielded
an average accuracy in the frame-by-frame method to be
0.93, and in the collar-based method to be 0.62.

5. DISCUSSION

The preliminary results presented in Section 4 show scope
for the strong label predictor model to detect vehicles in
sparse traffic conditions.

The accuracy of the predicted labels in Fig. 4 depends
on the choice of evaluation. A frame-by-frame evaluation
gives a high accuracy of 0.93. On the other hand, a collar-
based evaluation yields a lower accuracy of 0.62. The
evaluation under the collar-based method is more strict,
since a prediction contributes to the score only if all the
frames-wise predictions satisfy the collar requirement. In
comparison, for the frame-by-frame evaluation, even the
absence of any predicted event within a window can have
a non-zero score through the true-negatives.

The weak labels enable extracting a relevant noise
data window, which is then used by the strong label gen-
erator to provide input training data for the strong label
predictor. The label predictor, once trained, can be used
to identify vehicle onset and offset timestamps from un-
labeled noise data, i.e., data from noise sensors without a
traffic radar sensor coupled to it.

The noise features used for this analysis are restricted
to MFCCs. Although these coefficients allow for training
the models, other features can be considered, e.g., those
identified through feature learning [6], which may more

effectively capture the frequency content and temporal dy-
namics typical for a vehicle pass-by.

The noise data in this analysis is obtained from a
single noise sensor and from the same 24 hour period,
thereby overfitting the models to variables specific to this
temporal and spatial environment. To increase the model
robustness, the input data could be expanded to include
data from other noise sensors, and data from a longer time
period. Another solution could be to include other inde-
pendent and external sources of noise data [7].

The current requirement for sparse traffic places strict
constraints on the practical applicability of these models.
To circumvent this, more elaborate label generation and
prediction models may be implemented, such as CNNs
[8], and student-teacher models [9].

Development of these detection models may increase
their robustness and reliability to detect vehicle pass-by
from road-side traffic noise measurements. These models
may then be implemented as additional features to sen-
sors in a noise sensor network, allowing for the sensors to
assist in both the calculation as well as the validation of
noise simulations such as those performed in [10].
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J. Horvath, and P. E. Österlund, “From strategic noise
maps to receiver-centric noise exposure sensitivity
mapping,” Transportation Research Part D: Transport
and Environment, vol. 102, p. 103114, 2022.

2668


