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ABSTRACT

The Boundary Element Method (BEM) is a numerical
method used to solve acoustic problems such as radiation,
propagation and scattering by means of integral equations.
Combining BEM with shape optimization procedures al-
lows engineers to design components or ambients with
some desired acoustic characteristics. This work presents
a node-based shape optimization procedure in which the
derivatives of the BEM matrices with respect to the nodal
coordinates of a predefined mesh are obtained analyti-
cally, being calculated in the same way as for each element
contribution. Examples with a well-known base geometry
are presented to illustrate the potential of this procedure
for shape optimization of 2D time-harmonic acoustic ra-
diation problems.
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1. INTRODUCTION

Few works are found in the literature concerning discrete
approaches for optimization with BEM in acoustic prob-
lems. Andersen et al. [1] pointed that node-based proce-
dures can be expensive due to the large number of vari-
ables and the necessity of mesh regularization to avoid
distorted elements. Considering scattering problems, they
propose the usage of a moving averaged Gaussian filter
for each design variable (position of each node in a BEM
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mesh) at the normal direction. Moreover, the authors ap-
plied the semi-analytical adjoint sensitivity analysis to ob-
tain the sensitivities of acoustic measures of interest, in
which the derivatives of the BEM matrices were given by
the finite difference method with a fixed step size. Since
BEM global matrices are dense, the cost of performing
finite difference on the matrix level is expensive, and the
authors proposed a procedure based on a cleaver assembly
of the perturbed entries [1].
Since solving acoustic problems by BEM relies on us-
ing the Green’s function as the fundamental solution of
the time-harmonic Helmholtz differential equation [2],
and the numerical method behind the discretization pro-
cedure involves solving the corresponding Helmholtz in-
tegral considering the contribution of all elements on the
acoustic behavior of each node [3], the resultant system’s
matrices are complex-valued and dense. Thus, the evalu-
ation of derivatives of BEM matrices by using finite dif-
ferences can be expensive, and the choice of the step size
can be strongly dependent on the mesh size and on the an-
alyzed frequency.
There is a lack in the literature regarding the use of dis-
crete approaches with BEM in acoustic problems with ef-
ficient analytical evaluation of sensitivities. This is the
aim of the present work, where the adjoint method is used.
Although the procedure is applied to the minimization of
radiation efficiency in 2D problems, it is carried out in
such a manner that it can be easily adapted to other acous-
tic problems in 2D or 3D.
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Figure 1. a) outer domain Ω, interior boundary Γ,
normal direction n, normal component of velocity vn
and collocation point P. b) nodes, elements e, inte-
gration point K and relative distance r. c) Two-node
linear boundary element e.

2. 2D TIME-HARMONIC ACOUSTIC RADIATION
PROBLEMS SOLVED BY BEM

Some practical acoustic problems can be described by the
linearized wave equation [4, 5],

∇2p(X, t)− 1

c2
∂2p(X, t)
∂t2

= 0, (1)

where t is time, p is the pressure field evaluated at the
point X = (x, y, z) in the acoustic domain of interest and
c is the speed of sound in the acoustic medium. For time-
harmonic waves with angular frequency ω, Eq. (1) can be
rewritten in terms of p(X, t) = p(X, ω)ejωt, where j =√
−1, as the Helmholtz equation,

∇2p(X, ω)− κ2p(X, ω) = 0, (2)

where p is the complex amplitude of the pressure at X, and
κ = ω/c is known as the wave number.
Consider an exterior problem defined in a 2-D unbounded
acoustic domain Ω representing the radiation from a vi-
brating structure placed at the internal boundary contour
Γ. The boundary integral equation is obtained applying
Green’s second identity to functions p and ψ. Thus, the
boundary problem (Helmholtz Integral Equation) is de-
fined by [3, 6, 7]

C(P)p(P) = −
∫
Γ

(
jρωvnψ + p

∂ψ

∂n

)
dΓ, (3)

where vn is the amplitude of the normal component of the
particle velocity at a point in Γ, which is pointing away
from the interior domain, and the normal n is pointing
away from the exterior domain. The leading coefficient
C(P) is defined as [3, 6, 7]

C(P) = 1−
∫
Γ

∂ψL

∂n
dΓ, (4)

where ψL is the fundamental bi-dimensional solution of
the Laplace equation (ψL = − ln r/2π).
Considering an infinite 2D domain Ω with an internal
boundary Γ (see Fig. 1 (a)), the boundary Γ can be split
into a finite number nel of elements Γe as shown in
Fig. 1 (b). Coordinates xe and ye in each finite segment e
can be mapped to local coordinates ξ ∈ [−1, 1] as

xe(ξ) =

nn∑
i=1

xiN
e
i (ξ) and ye(ξ) =

nn∑
i=1

yiN
e
i (ξ),

(5)
where xi and yi are Cartesian 2D coordinates at points i at
e, nn is the number of points at e andNe

i (ξ) are interpola-
tion functions on e. This work considers linear segments,
Fig. 1(c), such that nn = 2 and

Ne
1 =

1

2
(1− ξ) and Ne

2 =
1

2
(1 + ξ). (6)

Pressure and normal velocity fields, p and vn, can be de-
scribed in a given element e as

p(ξ) =

2∑
i=1

piN
e
i (ξ) and vn(ξ) =

2∑
i=1

vniN
e
i (ξ),

(7)
where pi and vni are the nodal values at point i. A 2-node
element is considered sufficient to model the 2D radiation
problem discussed in this work due to the fact that, in gen-
eral, a detailed shape optimization employs a mesh with
more elements than that required to correctly describe the
wave phenomena.
The Helmholtz integral (3) is solved using the expressions
in Eq. (7) and performing numerical integration along Γ
considering kel Gauss-Legendre quadrature points per el-
ement. The system of equations that represents the contri-
bution of all points on the acoustic behavior of Γ can be
represented in a matrix form for a given ω as

(C+D)p = Gvn, (8)

where p is the vector pressure at each node, and vn is the
vector of normal velocities. The dense matrices C, D and
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G are resultant of the numerical integration of (4) over
the boundary Γ [3, 8].

2.1 Obtaining the radiation efficiency in terms of
BEM element parameters

The radiated power Wrad and the radiation efficiency σrad
can be obtained by BEM. Considering time-harmonic
acoustics, the sound intensity I (which is a vector quan-
tity) at a given point with coordinates (x, y) and for a
given angular frequency ω in a 2D-domain is given by [5]

I(x, y) =
1

2
ℜ
{
p(x, y)v∗(x, y)

}
, (9)

where v∗ is the complex conjugate velocity and ℜ is the
real part. Thus, the radiated power Wrad through the
boundary Γ in Fig. 1 can by obtained by [4]

Wrad =

∫
Γ

I · n dΓ =
1

2

∫
Γ

ℜ
{
p(−v∗n)

}
dΓ , (10)

where the normal direction points inward.
The total radiated power can be found by summing up the
contribution W e

rad of all elements in the mesh [8]

W e
rad = −1

2
ℜ
{
pT
e Bevn

∗
e

}
, (11)

where, for a straight 2-node element e, pe = [p1 p2]
T ,

vne = [vn1 vn2]
T , and [8]

Be =

∫
Γe

B0dΓe ≈
kel∑

K=1

B0
KwKJe , (12)

considering numeric integration with weights wK , where
Je is the determinant of the Jacobian of element e and [8]

B0 =

[
N1N1 N1N2

N2N1 N2N2

]
. (13)

Global matrix B is obtained by assembling all Be. Con-
sequently, Eq. (10) can also be written as [8]

Wrad = −1

2
ℜ
{
pTBvn

∗
}
. (14)

It is important to remark that only the pressure field at
Γ is needed to evaluate Wrad (a field point mesh is not
needed). Considering an infinite-length cylinder modeled
in two-dimension, the radiation efficiency can be obtained
by [5], for a given wave number κ,

σrad(κ, a) =
Wrad(κ, a)

ρcS|vn|2/2
, (15)

Figure 2. Parameterization of nodes position. Node i
moves at radial direction nN

i within boundsR. Radial
direction nN

i is obtained from normal directions of
elements in the vicinity of node i. ti is the radial
change in position for node i, according to the design
variable µi.

where |vn|2 is the spatially averaged, mean-square veloc-
ity, and S is the surface area of the structure. For an
infinite-length cylinder (2D), S is replaced by the perime-
ter 2πa.

3. PARAMETERIZATION AND OPTIMIZATION

The optimization is performed by changing the shape of Γ,
by means of its nodal positions, Figs. 2. In this work, we
assume that nodes can move only in the radial direction,
within the dashed lines shown in Fig. 2. Normal direction
for each node is defined is obtained from the normals of
the elements in the vicinity of node i, elements e1 and e2.
This direction nN

i = (nNx

i , nNy

i ) is kept fixed along the
optimization process such that

xi = x0i + µiRn
Nx

i , and yi = y0i + µiRn
Ny

i , (16)

where µi ∈ [−1, 1] is the parameter that controls the posi-
tion of each node i, and R is the maximum distance from
the initial position.
The optimization problem is thus written as
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min
µ

σrad(ωf )

subject to (C+D)p = Gvn

S ≤ Smax

− 1 ≤ µ ≤ 1

(17)

where µ is the vector containing all design variables, ωf

is the frequency of analysis, S is the length of Γ with
limit value of Smax. In this research, the problem is solved
by using the Method of Moving Asymptotes (MMA) [9],
with the parameters recommended by [10–12]).

3.1 Sensitivity analysis

In this work, the vibration of the 2D structure is imposed
and it is assumed that |vn|2 does not depend on the shape.
By this way, the derivatives of Wrad with respect to the 2D
nodal coordinates are given by [8]

∂Wrad

∂xi
= −1

2
ℜ
{
pT ∂B

∂xi
v∗
n

}
+ℜ

{
λT

(
∂Dc

∂xi
p− ∂G

∂xi
vn

)}
,

(18)
and

∂Wrad

∂yi
= −1

2
ℜ
{
pT ∂B

∂yi
v∗
n

}
+ℜ

{
λT

(
∂Dc

∂yi
p− ∂G

∂yi
vn

)}
,

(19)

where λ is obtained from the adjoint problem [8]

DT
c λ =

(
1

2
BvnR − j

1

2
BvnI

)
=

1

2
Bv∗

n . (20)

Thus, the sensitivities of matrices C, G, D and B
with respect to xi and yi are needed. This is the
most laborious part of the methodology, but strictly
analytical, being obtained using general and element
equations listed along this paper. The complete cal-
culation of the sensitivities is presented in a paper
recently submitted by the author, under review [8].

3.2 Smoothing

A linear spatial filter is applied to avoid possible local
solutions with a very irregular distribution of nodes
in a zigzag pattern. Here, a weighted sum of the vari-
ables µ is performed at a control region

µ̃i =
1∑

j∈Ni
Λij

∑
j∈Ni

Λijµj , (21)

Figure 3. Vibration of an infinite cylinder. 2D mod-
eling.

where µ̃ is the new set of design variables and Ni

is the set with the 2nN + 1 nodes adjacent to node
i (equally distributed on both sides). The parameter
Λij = nN − ∆ij is a weight depending on the rela-
tive position of nodes i and j in Ni where ∆ij is the
numbered distance between nodes i and j.

4. RESULTS

Consider an infinite-length cylinder with radius
a=0.5 m vibrating with angular frequency ω, as
shown in Fig. 3. It is assumed in-phase vibration
along the length, with circumferential normal veloc-
ity distribution defined by

vn(ς) = v̂n cos (2πmς) , (22)

where ς = φ/2π ∈ [0, 1] represents the normalized
path along the perimeter of the circumference and v̂n
is the peak of the normal velocity distribution. The
integer parameter m defines the shape of the distri-
bution (the number of complete spatial periods along
the perimeter), as shown in Fig. 3. For a given target
angular frequency ω, m can be changed to simulate
different structural configurations that lead to differ-
ent vibration shapes at the same frequency.
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Figure 4. Vibration of an infinite cylinder. 2D modeling.

The optimization procedure proposed is studied with
a mesh of 360 nodes to ensure detailed final shapes,
and initially considering nN = 8 aiming to avoid ir-
regular distribution of nodes. Two different values of
R are used: R = a/10 and R = a/5. Two excita-
tion frequencies are considered: 600 and 1200 Hz.
Two configuration of vibration are assumed: m=1
and m=4. The final shapes and the resultant pressure
surrounding the structure is presented in Fig. 4.

The increase in the perimeter is a consequence
of the appearance of winding curves in the final de-
signs, which cause significant changes in the direc-
tion of the element normals and, consequently, in the
direction of the element normal velocities. Depend-
ing on the frequency (and related wavelength) and

on m, this effect causes a more diffuse distribution
of the normals, promoting energy canceling and/or
hydrodynamic short cuts. The frequency plot of the
radiation efficiency for these two excitation frequen-
cies, considering R = a/5, are presented for several
values of m in Fig. 5. We can see the effect of the
optimization at the frequencies of interest.

4.1 Conclusion

The minimization of radiation efficiency in 2D
acoustic problems is discussed in this work, taking
as example an infinite-length cylinder. The equilib-
rium problem is solved by using the Boundary Ele-
ment Method (BEM) and the complete analytical ex-
pressions to evaluate the sensitivities are presented
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Figure 5. Radiation efficiency [no unit].

and developed in details. Mesh dependency and dis-
tortions are addressed by using a regularization tech-
nique (filtering). The use of analytical sensitivities
makes the problem efficient, hindering the limita-
tions of directly using nodal positions as design vari-
ables as well as avoiding numerical problems and the
need to investigate the proper level of perturbation in
finite differences and semi-analytical approaches.
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