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ABSTRACT1* 

In order to reduce the sound radiation or the transmission of 
sound, plate-shaped components are often coated with 
damping materials. In the case of bending waves, the 
descriptive dynamic-mechanical properties are the bending 
loss factor and the bending stiffness. The most frequently 
used method is the resonance curve method (also called 
Oberst method), in which the dynamic-mechanical 
properties are determined in the one-dimensional bending 
eigenmodes of a rectangular bar. However, this very robust 
method has two serious disadvantages for many applications. 
Firstly, the loss factor can only be reliably determined up to 
a value of η ≤ 0.1, as the neighbouring modes overlap too 
much for higher values of the loss factor. Secondly, the 
properties can usually only be determined at two to three 
resonance frequencies.  
Based on the measurement setup of the resonance curve 
method, a new test method was developed that overcomes 
the above-mentioned disadvantages of the resonance curve 
method. The bending loss factor and the bending stiffness 
can be measured as a continuous spectrum and the upper 
measurement limit for the bending loss factor is not limited 
due to the system. This new bending wave method is based 
on the theory of the so-called rigid Bernoulli beam. 
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1. INTRODUCTION 

Coatings on sheet metal structures are also often applied for 
acoustic reasons. Various principles of action are pursued 
here:  
− Reduction of airborne sound radiation by reducing the 

local velocity: A local coating reduces the velocity in this 
area. In the case of predominant radiation by free bending 
waves, the mass per unit area and the loss factor have a 
radiation-reducing effect. In the case of predominant 
radiation by forced bending waves, the influence of the 
loss factor is small and the reduction in airborne sound 
radiation results from the applied mass per unit area. 

− Structure-borne noise attenuation during propagation 
over a coated area: For attenuation of structure-borne 
noise propagation, the loss factor is the most important 
parameter.  

− Generation of an impedance jump at the coating 
boundary: For the reflections of sound waves at the 
impedance jump, the change in the mass per unit area and 
the bending stiffness due to the coating is decisive. The 
loss factor, on the other hand, plays a subordinate role.  

Various methods are used in practice for the metrological 
determination of the dynamic-mechanical properties of 
coatings. The bending wave method has been further 
developed by the authors, as it has several advantages 
compared to other methods. For a better understanding of the 
advantages and disadvantages, three standard methods are 
explained first, followed by the bending wave method. 
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2. OVERVIEW OF TEST METHOD 

2.1 Introduction 

For the determination of the loss factor various methods are 
known. The methods differ both in the dimensions of the 
specimens and thus also in the excited types of waves, as well 
as in the measurement methods used. The three most 
important methods are explained in the following. 

2.2 Resonance curve method 

The most commonly used method is the resonance curve 
method according to Heinrich H. Oberst, in which the 
dynamic mechanical properties are determined in the one-
dimensional bending eigenmodes of a bar. The 
determination of the bending loss factor η = tan(δf) and the 
flexural storage modulus E is described in ISO 6721-3 [3]. 
The typical sample dimensions are length x width x thickness 
= (200 mm … 300 mm) x (10 mm … 20 mm) x 1.0 mm.  
The loss factor η is determined according to the following 
equation: 

𝜂 = 𝑡𝑎𝑛 𝛿 =                                    (1) 

with: 
𝛥𝑓    width of a peak of the resonance curve of the nth 

mode in Hz at amplitude 𝑣 /√2, where 𝑣  is 
the maximum amplitude 

𝑓  natural frequency of the nth mode in Hz.  
The bending stiffness B in Nm2 is determined according to 
the following equation: 

𝐵 =
″

                                   (2) 

with:  
𝑚″ mass per unit area in kg/m2  
n ordinal number of the vibration n = 1, 2, … 
𝑓  natural frequency of the nth mode in Hz  
b width of the bar in m  
l  length of the bar in m  
𝛽  𝛽 = 1.1944, 𝛽 = 2.9860, 𝛽 = 2𝑛-1.  
The flexural storage modulus E in N/m2 can be determined 
according to the following equation: 

𝐸 =
ℎ

                                       (3) 

with:  
h height of the bar in m. 
The resonance curve method has the disadvantage that loss 
factors of η > 0.1 are systematically overestimated due to 
modal overlap. In addition, the narrow bars of only 10 mm 
to 20 mm width commonly used in this method lead to 
artifacts in liquid-applied coatings due to edge influence. The 
drying behavior of the bar edge and the bending of the 

coating over the bar width are particularly critical in the case 
of water-based coatings. 
The evaluation of the bending stiffness is associated with an 
increased uncertainty, since the freely vibrating length of the 
bar is included in the result with the fourth power. In 
addition, to clamp coated bars, the coating on the clamping 
surface must be removed, so that an undefined termination is 
produced at the clamping point. 

2.3 Power injection method 

In the power injection method, the loss factor is calculated 
from the power balance between the power injected and the 
power remaining in the system [4]. The test is typically 
performed on approximately 0.04 m2 to a maximum of 1 m2, 
roughly square panels. 
The loss factor η is determined according to the following 
equation:  

𝜂 =                                    (4) 

with:  
P structure-borne noise power introduced into the 

system in W  
f frequency in Hz 
E spatially averaged energy in the system in Ws.  
The structure-borne noise power P introduced into the 
system is determined using a load cell and a velocity sensor 
at the force transmission point:  

𝑃 = |𝐹||𝑣| 𝑐𝑜𝑠(𝜙 − 𝜙 )             (5) 
with:  
F force (r.m.s.) at the force transmission point in N  
v velocity (r.m.s.) at force transmission point in m/s 
𝜙 − 𝜙  phase shift between velocity and force.  
The energy existing in the system is determined according to 
the following equation: 

𝐸 = 𝑚𝑣                                    (6) 
with:  
m mass of the plate in kg  

𝑣  spatially averaged velocity square over the entire 
plate in (m/s)2.  

The frequency-dependent direct sound field around the force 
transmission point must be excluded from the evaluation and 
the higher energy density at the plate edge must be taken into 
account [5]. 
The test plates allow the analysis of coatings applied over 
large areas. In contrast to the narrow bars used in the 
resonance curve method, the edge influence is negligible 
due to the small proportion compared to the area. If the 
airborne sound velocity in the near field is determined in 
addition to the structure-borne noise velocity, the 
radiation-relevant sound power can also be determined. 
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However, the comparatively large test plates make 
investigations in the climatic chamber more difficult. 
 

 

Figure 1. Test set-up for the power injection method.  

The bending stiffness cannot be derived from the power 
injection method. In principle, however, the measured 
velocities on the plate can be used for a modal analysis to 
determine the effective bending stiffness of the first 
modes. 

2.4 Reverberation method  

The reverberation method determines the loss factor from the 
exponential decay of the structure-borne noise velocity after 
a pulse-like excitation. Strictly speaking, a diffuse structure-
borne noise field, i.e. a sufficiently high modal density, is a 
prerequisite for the application of the method. Ultimately, 
however, the decay behaviour of a single mode can also be 
analysed, although in this case the attenuation must not be 
too high, since otherwise an exponential amplitude response 
will not be obtained. The measurements are usually carried 
out on square plates of approx. 1.5 m2, which allow a lower 
frequency limit of approx. 100 Hz with a 1.0 mm thick steel 
plate. 
The loss factor η is determined according to the following 
equation: 

𝜂 =
.

                                   (7) 

with:  
T reverberation time of velocity in s  
fm centre frequency of the analysed frequency range in 

Hz.  
The reverberation method requires that the decay time of 
the bandpass filter used is shorter than the decay time of 
the test object to be analysed. Reliable results can be 

obtained using the time-inverse Schröder backward 
integration if the condition 𝐵𝑇 > 4 is met, where B is the 
filter bandwidth in Hz. For low attenuations, the 
reverberation method is very well suited. However, the 
large dimensions of the test objects compared with the 
resonance curve method make measurements in a climatic 
chamber difficult. The bending stiffness cannot be 
determined using this method. 
 

 

Figure 2. Test set-up for the reverberation method.  

3. BENDING WAVE METHOD 

3.1 Motivation  

With the further developed bending wave method, a method 
has been standardized which overcomes some disadvantages 
of the methods described above. The bending wave method 
determines the dynamic-mechanical properties of a 
unilaterally clamped bar which is excited to one-dimensional 
bending vibrations without contact. 

3.2 Test objects 

The bar dimensions are preferably length x width = 500 mm 
x 50 mm when using 1.0 mm thick spring steel sheet as the 
support bar for the coating to be tested.  
The larger bar dimensions compared to the resonance curve 
method were chosen for the following reasons: 
− The bar length of 500 mm results in a higher stability of 

the measurement results compared to local material 
variations along the bar, as the coating length is longer 
and the analysis is carried out at many points over the 
entire length of the bar. 
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− The bar width of 50 mm significantly reduces the edge 
influence compared to the narrow bars of 10 mm to 
20 mm commonly used in the resonance curve method. 
The bar width was not chosen even higher since this 
would reduce the upper frequency limit of the method 
due to cross modes. 

3.3 Description of the test arrangement  

The complex velocity is determined at least 20 measuring 
points along a bar and a best fit to the bending wave 
equation is performed by iteration. 
The developed test facility allows the measurement of up 
to 18 bars with different dimensions in one fully 
automated test cycle (see Fig. 3).  
 

 

Figure 3. Test set-up for the bending wave method. 

3.4 Evaluation  

The bending wave method is based on the theory of the so-
called shear-rigid Bernoulli beam. Considering various 
associated assumptions, the linear homogeneous differential 
equation for the bar including the terms for the near fields at 
the bar ends is obtained [1]: 

𝑣(𝑥) = 𝑣 𝑒 + 𝑣 𝑒 + 𝑣 𝑒 + 𝑣 𝑒     (8) 
with:  
v(x) amplitude of velocity at point x in m/s  
v+ amplitude of the velocity of the outgoing wave in m/s  
v- amplitude of the velocity of the returning wave in m/s  
v+j amplitude of the velocity of the near field of the 

outgoing wave in m/s  
v-j amplitude of the velocity of the near field of the 

returning wave in m/s  
k complex wave number 𝑘 = 𝑘 ′ − 𝑗𝑘″ in 1/m. 
No assumptions are made about the boundary conditions 
during the evaluation, since it has been shown 
experimentally that the clamping conditions are not ideal 

despite the solid steel clamps used to hold the bar. Ideally, 
the boundary conditions are free of velocity and bending at 
the clamping point and free of moment and force at the freely 
vibrating end of the bar.  
For evaluation, the bending wave equation is used to 
determine the complex wave number from the 
experimentally determined velocities along the bar. For each 
frequency to be analysed, the following system of equations 
is set up: 
 

𝑒 𝑒 𝑒 𝑒
𝑒 𝑒 𝑒 𝑒

. . . . . . . . . . . .
𝑒 𝑒 𝑒 𝑒

𝑣
𝑣
𝑣
𝑣

=

𝑣
𝑣
. . .

𝑣

    (9) 

 
[𝐴][𝑣] = [𝑣 ] 

with:  
x1…n measuring positions along the bar in m  
vx1…xn measured complex velocity in m/s.  
The overdetermined linear system of equations is solved for 
each frequency using singular value decomposition (SVD), 
i.e. the amplitudes v+, v+j, v-, v-j are calculated. 
In an iterative process, the complex wavenumber with the 
smallest squared error of the standard is searched for. This 
minimizes the sum of the difference squares between 
measured velocity [𝑣 ] and calculated velocity [𝐴][𝑣]. 

||[𝐴][𝑣] − [𝑣𝑥]||
𝐹

→ 𝑚𝑖𝑛                                  (10) 

From the complex wave number 𝑘 = 𝑘 ′ − 𝑗𝑘″ with the 
minimum squared error, the required quantities loss factor 
and bending stiffness can be calculated: 

𝜂 = 4
″

′                                    (11) 

𝐵 =
″ ( )

′
                                   (12) 

with: 
𝑚″ mass per unit area of the bar in kg/m2 
b width of the bar in m.  
To limit the computational effort, the complex wavenumber 
is determined for the centre frequencies of the 1/96 octave 
bands. The results are output in 1/24 octaves, with four 
values arithmetically averaged in each case.  
An example of the amplitudes of equation (10) calculated 
from the measured velocity using the bending wave method 
is shown in Fig. 4. 
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Figure 4. Measured velocity (red dots), calculated 
resulting velocity (blue curve), outgoing bending 
wave from left to right (dark grey curve), returning 
bending wave from right to left (light grey curve) 
and near field at the free bar end (purple curve). 

3.5 Frequency range of the bending wave method  

The upper working frequency of the bending wave method 
is determined by the position of the first cross mode of the 
bar. Below the first cross mode, there is a one-dimensional 
wave field, which is the basis for the model of the bending 
wave method. Below the first cross mode, the method is 
therefore unrestrictedly applicable. 
The frequency of the first cross mode f0 is determined by the 
following equations:  

𝜆 >  2 𝑏                                    (13) 

𝑓 <  
(  )

/

″                                    (14) 

Under the idealized assumption of homogeneous bar 
properties over the entire bar length and bar width, as well as 
an ideal measurement point grid at the same phase points of 
the cross modes, the cross modes have no influence on the 
analysis of the longitudinal modes. 
For a 50 mm wide and 1.0 mm thick spring steel bar, the first 
cross mode is about 1000 Hz. With coatings made of sheet 
material that allow homogeneous properties over the entire 
bar length and width, an upper frequency limit of up to 
2000 Hz can be achieved if the loss factor was above approx. 
η > 0.05. In the case of liquid-applied coatings, there is 
usually no homogeneous coating, which typically results in 
an upper frequency limit of 1600 Hz.  
The lower working frequency of the bending wave method 
results from the maximum permissible phase error between 
the individual measuring points. With long bending waves, 

only small spatial phase gradients occur. Experimental 
investigations have shown that the lower working frequency 
fu of the test method corresponds to the frequency at which 
the free vibrating length of the bar is approximately 1.7 times 
the free bending wavelength. 
The lower operating frequency fu of the test method can be 
estimated as follows:  

𝜆 <
.

                                   (15) 

𝑓 >  
.

/
                                   (16) 

For the 500 mm long spring steel bars described above, 
reliable measurement results can be determined from 
125 Hz. 
The method is not limited to specimens with spring steel bars 
as supports. The dynamic mechanical properties of bars 
made of silicone and CSM can also be determined using the 
bending wave method described. The dimensions of the 
specimens must be adapted according to the frequency range 
to be investigated. 

4. COMPARISON OF BENDING WAVE METHOD 
AND RESONANCE CURVE METHOD 

The velocities on the bar determined for evaluation 
according to the bending wave method also allow evaluation 
according to the resonance curve method. On the same test 
object and on the basis of the same measurement data, the 
evaluation can be carried out according to both methods. 
Since the resonance curve method only provides results in 
the natural frequencies, the comparison with the results of the 
bending wave method is only made in the resonance 
frequencies of the resonance curve method.  
For comparison of methods, six spring steel bars each were 
investigated for six different nominal coating thicknesses in 
the temperature range from -20 °C to +70 °C. The coating 
material used was a liquid-applied coating with masses per 
unit area between 2 kg/m2 and 4 kg/m2. The maximum loss 
factors were between 0.1 and 0.3 depending on the coating 
thickness and temperature. 
The evaluation was carried out for the modes with ordinal 
numbers 4 and 5, whereby the associated frequencies for the 
investigated bars were between 100 Hz and 400 Hz 
depending on the coating thickness and the temperature. In 
the resonance curve method, the evaluation was carried out 
on the basis of the resonance width for all values, i.e. also for 
very small values of the loss factor. Fig. 3 shows the mean 
value and standard deviation of the ratio between the loss 
factor according to the resonance curve method 𝜂  and the 
loss factor according to the bending wave method 𝜂  
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depending on the absolute value of the loss factor according 
to the bending wave method 𝜂 . Mean value and standard 
deviation were calculated in value ranges of the loss factor 
with a width of 𝛥𝜂 = 0.01 or 𝛥𝜂 = 0.05.  
 

 

Figure 5. Ratio of the loss factor according to the 
resonance curve method and the loss factor 
according to the bending wave method depending 
on the absolute value of the loss factor according to 
the bending wave method, evaluation at the 
frequencies of the modes with ordinal numbers 4 
and 5 of the resonance curve method: mean value 
and standard deviation.  

The results show that for loss factors between 0.02 and 0.15, 
both methods give good agreement. For loss factors of more 
than 0.15, the values obtained by the resonance curve method 
are systematically higher on average than those obtained by 
the bending wave method. According to ISO 6721-3 [3], loss 
factors can only be determined with the resonance curve 
method at values of 𝜂 ≤ 0.1, which is confirmed by the 
present measurement results. Due to the superposition of the 
resonance curves at a higher damping, the loss factors are 
systematically overestimated with the resonance curve 
method. For loss factors of less than 0.02, the methods 
provide deviating results with massive scattering. It should 
be noted that for these very low loss factors, both the 
resonance curve method, due to the narrow resonance 
curves, and the bending wave method, due to the small 
spatial amplitude decrease, are less suitable. For very low 
damping, the reverberation method, which can also be 
applied to bars, is more suitable. 

5. EXAMPLE 

Fig. 6 shows the loss factor of a spring steel bar (dimensions 
500 mm x 50 mm x 1.0 mm) with a 4.0 mm thick sound 

deadening coating determined using the bending wave 
method. Fig. 7 shows the results of the same bar determined 
using the resonance curve method. 
 

 

Figure 6. Loss factor of a 1.0 mm tick spring steel 
bar with 4 kg/m2 sound deadening coating 
according to bending wave method. 

 

 

Figure 7. Same test sample as in Fig. 6 but analysed 
according to resonance curve method.  
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This example shows the overestimated loss factor when 
using the resonance curve method. As already explained, this 
behaviour occurs on statistical average with loss factors 
above η > 0.15 but not systematically with every bar.  
For easier interpretation of the frequency- and temperature-
dependent data, the representation with the help of a colour 
scale has proven to be useful (see Fig. 8). 
 

 

Figure 8. Same results as in Fig. 6 but representation 
of loss factor with colour scale and with bandwidth 
1/24 octaves.  

6. SUMMARY 

The advantages and disadvantages of three common 
methods (resonance curve method, power injection method 
and reverberation method) were described for the 
determination of the loss factor. Based on the test device for 
the resonance curve method and the bending wave equation 
according to the theory of the so-called shear-rigid Bernoulli 
beam, another method, the bending wave method, was 
developed and explained in detail here. The main advantages 
of the bending wave method compared to the resonance 
curve method are the extended range of validity to very high 
loss factors (η > 1), the high spectral resolution and the 
measurement range extended to high frequencies.  
A metrological comparison of the resonance curve method 
and the bending wave method on the same test objects has 
shown that the loss factors of both methods agree very well 
on average in their validity range of η = 0.02…0.15. With the 
resonance curve method, the loss factors above the validity 
range of the method, i.e. at loss factors of ηR > 0.15, are 
overestimated on statistical average due to the overlap of the 
resonance curves. 
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