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ABSTRACT
The use of Bayesian Inference and probabilistic models is
an increasingly important topic in the field of sound field
analysis. Kernel functions, widely utilised in Gaussian
Processes, enable us to describe a sound field in terms of
its spatial covariance. In this study, we explore the use
of kernel functions to reconstruct the late part of a room
impulse response, based on measurements from a set of
distributed spherical microphone arrays. As the density
of reflections in a room increases quadratically with time,
and the spatial statistics of reverberant fields are well de-
scribed, we are able to express the spatial covariance of the
field as a closed-form function, allowing to solve the prob-
lem algebraically, which is computationally very efficient.
The experimental results of this study show a successful
reconstruction of the room impulse response as well as a
fair extrapolation of the sound field far from the measure-
ment aperture. The results also indicate an improvement
in the computational burden, and a good generalisability
across different rooms.
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1. INTRODUCTION

Sound field reconstruction techniques have gathered sig-
nificant attention in the recent years due to their extensive
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use in various applications, including near-field acoustic
holography [1], active noise control [2, 3], sound field re-
production [4–6], and underwater acoustics [7]. In partic-
ular, this study addresses the reconstruction of reverberant
sound fields in rooms, a highly relevant field given that
much of technology and communication occurs in indoors
environments.

Acoustic fields in a room are usually intricate due to
the boundaries and elements in the room that introduce
scattering and diffraction effects. In the literature, various
approaches can be found that characterise the sound field
in a room, including plane wave expansions [8], modal
expansions [9], sparse reconstruction reconstruction [10,
11], Bayesian inference [12, 13], kernel regression [14],
deep-learning techniques [15, 16], and others.

It is common to find methodologies that exploit the
time structure of the sound field, using different treatments
for the early and late parts of the room impulse response.
Whereas the early part presents a sparse energy distribu-
tion, after a few milliseconds the reflections become in-
distinguishable from each other [17]. The late reverber-
ation is characterised by an increasingly higher number
of reflections of chaotic nature, which hinders an accurate
deterministic reconstruction. Within this context, statisti-
cal methods, such as Bayesian inference or probabilistic
models, are a suitable approach when reconstructing re-
verberant sound fields.

In this paper, we propose a sound field reconstruction
technique for reverberant sound fields that can be applied
over large domains. The proposed methodology primarily
aims at preserving the statistical properties of the late re-
verberation, as well as maintaining a uniform energy den-
sity across the room.
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2. THEORETICAL BACKGROUND

A room impulse response presents a general time struc-
ture consisting of the direct sound, early reflections and
late reverberation. Whilst the early part exhibits a sparse
distribution of reflections, the late part is characterised by
a larger reflection density that increases quadratically with
time [17]. During the late part, the acoustic energy tends
to decay exponentially with time, and exhibits a uniform
energy density on average across space for a given time
instance.

A reverberant sound field can be modelled using a set
of infinite plane waves with random phase travelling in
random directions. In this way, the sound field in the room
is approximately diffuse, and the sound pressure p at a
point r for a frequency f = ω/2π is given by [18]

p(r) = lim
N→∞

1√
N

N∑
i=1

Aie
j(ωt−ki·r), (1)

where Ai = |Ai|ejφi ∈ C is the complex amplitude and
ki ∈ R3 is the wave vector of the wave i. This model can
be used to cast the sound field reconstruction problem as
an optimisation task, where we consider the cost function

J(a) = ∥p−Ha∥22 + λ∥a∥22. (2)

Here, H ∈ CM×N represents N plane waves measured at
M different positions, a ∈ CN is the complex amplitude
of each wave, p ∈ CM is the measured data for a specific
frequency and λ is a regularisation parameter. Once the
coefficients a are obtained, they can be used to extrapolate
the measured data basing the reconstruction on a linear
combination of the plane waves described in Eq. (1). Nev-
ertheless, solving Eq. (2) for the case N → ∞ would re-
quire an infinite number of coefficients. To overcome this
challenge, we can resort to the kernel trick [19], a math-
ematical method that replace the dot products (as in Ha)
with a positive definite function, called the kernel func-
tion. This approach allows for estimating the sound pres-
sure algebraically at a reconstruction point p• in a high-
dimensional space without the need of the coefficients Ai.
This high-dimensional space is defined by the kernel func-
tion, which corresponds to the spatial correlation of the
sound field. The spatial correlation can be obtained from
Eq. (1) considering two points of the domain, r1 and r2,
and averaging over a whole sphere, and is explicitly given
by [20]

E [p(r1)p(r2)∗] = σ2 sin (k||r1 − r2||)
k||r1 − r2||

, (3)

where E[·] is the expectation operator, σ2 = E
[
|p|2

]
is

the variance of the acoustic pressure, and || · || is the 2-
norm in an euclidean space. This kernel is suitable since
captures the physical properties of a reverberant sound
field based on the ensemble statistics, providing a closed-
form expression that maximises the efficiency of the re-
construction. The reconstructed pressure using the kernel
trick requires only of the measured data and the spatial
correlation, and can be obtained via [19]

p• = KT
MN (KMM + λI)−1p, (4)

where KMN ∈ RM×N and KMM ∈ RM×M are map-
ping matrices defined by Eq. (3).

2.1 Energy decay and Anchor Points

The reconstruction based on the Bessel kernel underes-
timates the energy of the sound field when extrapolat-
ing far from the measurement points. This is a natural
consequence of the spatial correlation values, Eq. (3), for
kr >> 1. Since the reconstruction relies on this corre-
lation and it decreases far from the aperture, the recon-
structed energy is also expected to be low far from the
measurement points. This phenomenon presents a prob-
lem when measuring with a distributed set of microphone
arrays, given that the energy density can be considered
spatially uniform on average in a reverberant room.

In this paper, we propose using additional synthe-
sised pressure values that anchor the correlation at loca-
tions where there are not enough measurements to infer
the sound field with sufficient energy. These values are
termed anchor points, and they are not directly measured
but rather drawn (as samples) from the statistical distribu-
tion of the measured pressure. In particular, in a reverber-
ant field the values of the mean squared pressure |pRMS |2
follow an exponential distribution when measured along a
line [21]. The methodology is as follows: first, the mea-
sured data within a short time window is used to find the
rate parameter of this exponential distribution by fitting
the |pRMS |2 histogram. Then, we use this distribution
to draw the anchor point values that are statistically simi-
lar to the data and preserve the energy density across the
room. Since the spacing between the anchor points should
be relative to the wavelength, a different number of anchor
points will be used depending on the frequency. It must be
noted that rather than a deterministic extrapolation of the
data, the primary aim is to obtain a qualitative reconstruc-
tion that preserves the statistical properties of the sound
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field and specially the late part of the room impulse re-
sponse.

3. RESULTS

Experimental measurements were conducted to evaluate
the performance of the proposed method. Room impulse
responses were measured in a fully-furnished classroom
of dimensions (6.2, 9.4, 3.0)m with an averaged rever-
beration time of T30 = 0.6 s. Two open spherical mi-
crophone arrays were used to reconstruct the sound pres-
sure, where each array was comprised of 72 microphones
(4192, HBK) of which 61 laid on a sphere of 25 cm and
the remaining 11 were place in the interior for stability.
The arrays were placed 3m apart. As ground truth, a ref-
erence line of 456 positions was measured with a spacing
of 1 cm between sensors, covering an aperture of 4.5m.
In order to reduce uncertainty in the microphone position-
ing, a robotic arm (UR5, Universal Robots) was used. The
source utilised was a two-way loudspeaker (BM6, Dynau-
dio), driven with a logarithmic sweep covering the fre-
quency range 20 − 20k Hz. More details can be found
in [22]. Figure 1 shows a simple sketch of the setup.
Here, the domain covered by the anchor points is also in-
cluded, although their specific position changes with the
frequency.

Figure 1: Sketch of the measurement setup, where
the two open spherical microphone arrays, the refer-
ence line and the source are represented. Addition-
ally, the coverage of the anchor points is included.
Their specific position depends on the frequency.

We assess the reconstruction of the impulse response
primarily based on the statistical properties and the en-
ergy density. That is, the correlation of the reconstruc-
tion should follow the Bessel kernel (c.f. Eq. (3)); the his-

togram of the mean squared pressure along a line should
approximately follow an exponential distribution; and the
energy density should be relatively uniform on average
across the space for a given time window.

Figure 2 shows the mean squared pressure of the
sound field for two different time windows. The differ-
ent curves depict the ground truth and the reconstructed
sound field using both the kernel trick ((4)) and the pro-
posed method that includes the use of anchor points. The
anchor points are displayed along the reconstruction do-
main, i.e. the reference line (see Fig. 1). For these results,
the anchor points were set to be a wavelength apart from
each other.

Comparing the reconstruction obtained using both
methods (with and without anchor points) to the ground
truth, we can see in Fig. 2 that the energy is underesti-
mated over the entire measurement aperture. Consider-
ing that the method uses the Bessel kernel as the spa-
tial correlation, there is a fraction of the true energy that
does not follow Eq. (3) and is not being reconstructed.
The so-called Representer Theorem in its semi-parametric
form [23] offers a mathematical framework that can be
exploited to refine the reconstruction, combining differ-
ent sound field models. On the other hand, comparing the
reconstruction at two time windows in Fig. 2 (top vs. bot-
tom), it is clear that the reconstruction follows the energy
decay as a function of time accurately.

As mentioned before, the energy of the reconstruction
decays far from the array as consequence of the decay of
the Bessel kernel. This is seen in Fig. 2 for the kernel trick
method, where the energy is not uniform across the recon-
struction aperture. In contrast, the proposed methodology
includes the use of anchor points, and the results show a
rather uniform energy distribution along the reconstruc-
tion domain, successfully covering an aperture of 4.5m.

4. CONCLUSION

In this paper, we have presented a method for reconstruct-
ing the late part of the room impulse response using dis-
tributed arrays over a large spatial aperture. The method
is based on the use of kernel methods, which exploits the
prior knowledge on the spatial correlation of the sound
field. However, since the spatial correlation is modelled as
a Bessel function, classical kernel methods lead to under-
estimating the energy of the sound field far from the mea-
surement points. The proposed methodology makes use
of anchor points to maintain the energy density uniform at
those points where measurements are not available, pre-
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mean squared pressure - time window: 80− 100ms

mean squared pressure - time window: 180− 200ms

Figure 2: Mean squared pressure along the recon-
struction line, averaged over the duration of each
time window (20ms). The three curves correspond
to the reference true value, the kernel trick and the
proposed method, where anchor points are included.

serving the statistical properties of the late reverberation.
Therefore, the achieved reconstruction is spatially corre-
lated to either the measurements or the anchor points, the
mean squared pressure along the reconstruction domain
follows an exponential distribution, and the energy is uni-
form on average across the room for a specific time win-
dow.
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