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ABSTRACT* 

Computational auditory models have been used for decades 
to develop audio signal processing algorithms in hearing aids 
(HAs). Here, using a biophysically inspired auditory model 
in a differentiable convolutional-neural-network (CNN) 
description (CoNNear), we trained end-to-end machine-
learning- (ML) based audio signal-processing algorithms 
that maximally restored auditory-nerve (AN) responses 
affected by cochlear synaptopathy. To this end, we used 
backpropagation to develop several ML-based algorithms 
that match the simulated response of the corresponding 
hearing-impaired model back to the normal-hearing 
response, each time using the same CNN encoder-decoder 
architecture but different loss functions to achieve different 
compensation of the AN responses. Evaluation of the HA 
models was performed by processing sentences of the 
Flemish matrix test and comparing model outcomes with the 
unprocessed sentences. The magnitude spectra of all 
processed sentences showed differences between the HA 
models in amplification of low- and high-frequency speech 
content, whereas the high-frequency processing often 
introduced audible tonal distortions. Our processing showed 
different enhancement of the AN population responses at the 
speech onsets, vowels and consonants. We will objectively 
assess the effect of the most optimal compensation 
algorithms on sound quality and speech intelligibility in 
future clinical experiments. 
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1. INTRODUCTION 

Exposure to noise or ototoxic drugs and aging are common 
causes of sensorineural hearing loss (SNHL) in humans, and 
often result in irreversible damage of the outer hair cells 
(OHCs) or synapses to the auditory nerve (AN), i.e. cochlear 
synaptopathy (CS) [1-3]. Several studies have suggested that 
CS results in a loss of the low- (LSR), medium- (MSR) and 
high-spontaneous rate (HSR) AN fibers (ANFs), in which 
the LSR and MSR are the first to be lost [2]. CS degrades 
encoding of the temporal envelope in sound, which may 
contribute to a variety of perceptual abnormalities such as 
speech-in-noise difficulties and decreased speech 
intelligibility [2, 4, 5].  
However, pure tone audiometric thresholds, related to OHC 
loss, are not affected in CS, therefore CS is referred to as 
“hidden hearing loss” [6]. Studies on animal models have 
shown that the loss of ANFs and synapses to the AN, related 
to cochlear neuropathy and synaptopathy, are the first signs 
of permanent hearing damage and occur earlier in time than 
OHC loss [1,7]. Since the audiogram is an insensitive marker 
for damage to the AN and loss of synapses, patients suffering 
from CS will experience difficulties understanding speech in 
challenging situations while their hearing thresholds remain 
normal. Thus, it is expected that a large group of the noise-
exposed or aging population suffers from CS, which still 
remains undiagnosed based on their audiogram and will   
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therefore not be treated properly. Non-invasive diagnostic 
techniques of CS have been recently proposed based on 
auditory-evoked potentials (AEPs) [8]. 
The current hearing-aid (HA) algorithms focus on 
compensating for the elevated audiometric thresholds, but do 
not specifically compensate for the hearing difficulties 
related to CS, and therefore offer no treatment to patients 
who suffer from CS. The non-linear dynamic-range 
compression of current HAs reduces the amplitude 
fluctuations of the temporal envelope, which might even 
worsen the hearing ability in case of CS [9-11]. HA 
algorithms aiming to compensate for OHC loss and CS-
related hearing impairment hence need to be fundamentally 
different from standard HA algorithms, and be able to grasp 
the complex non-linear working mechanism of the auditory 
system.  
Auditory models have been used for decades to develop 
audio signal processing algorithms in HAs. Typically, the 
difference signal between a normal-hearing (NH) and 
hearing-impaired (HI) model is used to design such 
algorithms, but only recently machine-learning (ML) 
methods have made their entry in this field. Specifically, 
when adopting differentiable descriptions of biophysical 
models of hearing impairment, it is possible to fully 
backpropagate through the models and design a new type of 
ML-based audio signal processing that compensates for 
different aspects of SNHL [12-13]. The objective of this 
work is to investigate several ML-based HA algorithms able 
to restore CS, based on a convolutional neural network 
(CNN) description of a NH and HI auditory model. We will 
also investigate which sound and speech features are 
modified when letting these ML algorithms decide the most-
optimal solution to compensate for CS.  

2. METHODS 

2.1 CoNNear Auditory Model  

We used a convolutional neural network model of the 
auditory periphery, CoNNear [14-16], that was developed 

starting from a biophysically inspired computational model 
of the human auditory periphery [17]. The CoNNear model 
provides a fast and differentiable description of the stages 
(basilar membrane (BM) vibrations, inner-hair-cell (IHC) 
potential, AN firing) of the human auditory system across 
201 simulated tonotopic cochlear locations, with center 
frequencies (CFs) spaced according to the Greenwood place-
frequency map of the cochlea [18].  
The NH CoNNear model is shown in Fig. 1, and can simulate 
the AN response 𝑟F to an auditory input 𝑥, sampled at a rate 
of 20kHz. The CoNNear model consists of three distinct 
modules: the cochlear stage (CoNNearcochlea), IHC stage 
(CoNNearIHC), and ANF stage. The ANF stage is subdivided 
into three different types of ANFs: CoNNearANfH, 
CoNNearANfM and CoNNearANfL for the HSR, MSR and LSR 
ANFs, respectively. The responses of the three ANF types 
are combined together to yield the final summed AN 
response 𝑟F, by using weights HNH, MNH and LNH that 
correspond to the number of HSR, MSR and LSR fibers in a 
NH periphery (HNH = 13, MNH = 3 and LNH = 3 as reported 
in Verhulst et al. [17]). The CoNNearcochlea, CoNNearIHC and 
CoNNearANf modules comprise encoder-decoder CNN
architectures that can be backpropagated through, thus 
facilitating the development of individualized audio-
enhancement methods. 

2.2 DNN-Based CS-Compensating HA Algorithms 

From the NH CoNNear model, we can obtain a HI CoNNear 
model by retraining the CoNNearcochlea stage via transfer 
learning to simulate OHC loss [19], and by changing the 
weights of the different types of ANFs in the CoNNearANf 
stage to model AN fiber loss, related to CS. The CoNNear 
HI periphery model can be individualized based on 
frequency-dependent degrees of OHC loss and CS. The 
individualized degree of CS and OHC loss of a listener can 
be obtained from diagnostic measurements using the 
rectangular amplitude-modulated envelope-following
responses (RAM-EFRs) and distortion-product otoacoustic 
emissions (DPOAEs), respectively [20-21].   

Figure 1. CoNNear model of the NH auditory periphery [12]. 
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Here, based on the reference NH model and a HI CoNNear 
model, we use backpropagation to design ML-based audio 
signal processing algorithms that optimally compensate for 
CS [12-13]. As training dataset, we used 2310 randomly 
selected recordings from the TIMIT speech corpus [22]. The 
training procedure for a deep-neural-network- (DNN) based 
HA algorithm has been explained by Drakopoulos et al. [12-
13] and goes as follows: A DNN-HA model is trained to 
process the input speech 𝑥 into 𝑥̂ such that the difference 
between the NH CoNNear model response 𝑟F and the HI 
CoNNear model response 𝑟̂F is minimized. Different CS-
compensating HA algorithms can be designed in this way by 
defining a different set of loss functions [12-13]. These 
functions can focus on minimizing different aspects of the 
AN responses (e.g. free training, using more or less cochlear 
channels, limiting the frequency range, time-domain and 
frequency representations, also summed across CFs). Thanks 
to the modular nature of CoNNear, the loss functions can be 
fine-tuned for each of its distinct modules to optimally 
compensate for hearing impairment in each auditory stage. 
In this work, we trained three DNN-HA models 
(CS_PReLU, CS_tanh_freq and CS_tanh) to compensate for 
a hearing-impairment with a CS profile of HHI = 7, MHI = 0 
and LHI = 0 ANFs, and no OHC loss. A CNN encoder-
decoder architecture was used that comprised 16 layers (8 in 
the encoder and 8 in the decoder) as described in [12]. The 
three HA models were trained using different activation 
functions between the convolutional layers, and different sets 
of loss functions that were defined to minimize a 
combination of different aspects of the AN responses. The 
individual weights of the components in each joint loss 
function are listed in Tab. 1. A more detailed explanation of 
the different components of the loss functions that can be 
used during training is given by Drakopoulos et al. [13].  

Table 1. Loss function weights and activation function 
used per DNN-HA model. 

Loss function 
weights 

CS_PReLU CS_tanh_freq CS_tanh 

Low-frequency CFs 
emphasized 

No Yes No 

AN population 
response 

High Low High 

Complex STFT AN 
response per channel 

High Low High 

Squared complex 
STFT 

Yes No Yes 

Offset removal of 
resting firing rate 
AN 

Yes No Yes 

Non-linear 
activation function 

PReLU tanh tanh 

 

The CS_PReLU and CS_tanh HA models were trained using 
the same weights across their different loss components, they 
only differ in the used non-linear activation function. In all 
three HA models, the time-domain AN responses were 
squared (loss function l_r² in [13]) and only AN responses 
above a certain threshold were minimized (threshold T_r in 
[13]). The squaring of the time-domain responses was done 
to emphasize the temporal contrast of the speech envelope 
modulation to focus the optimization on the enhancement of 
the most excited regions, since temporal envelope coding is 
essential for robust speech intelligibility [23-24]. The 
threshold T_r was applied in the loss functions to further 
focus on the temporal peaks of the responses, and hence 
avoid minimizing differences in the resting firing rates of the 
AN responses. In the CS_PReLU and CS_tanh models, a 
high weighting was used for the loss function of the AN 
population response and for the loss function of the complex 
STFT AN response, while this weight was set lower in 
CS_tanh_freq. The CS_PReLU and CS_tanh models both 
included a loss function for the squared complex STFT, and 
a loss function to remove the offset of the resting firing rate 
of the AN, while this was not the case for the CS_tanh_freq 
model. Only in the CS_tanh_freq model, a frequency 
weighting was applied to emphasize the processing of the 
low-frequency CFs (freq.emphasis in [13]), so that the high 
frequencies were processed less than the low. This could 
result in a more accurate optimization, since the corpus 
contains energy mostly at low frequencies and could lack 
information on how the processing needs to be done at high 
frequencies. Emphasizing the low CFs in the optimization 
might hence achieve better benefits in speech intelligibility. 

2.3 HA Model Evaluation 

The three trained HA models were evaluated on their ability 
to compensate for the considered CS profile of HHI = 7, MHI 
= 0 and LHI = 0 ANFs. Post-mortem data from recent
temporal-bone studies have shown that NH people have lost 
more than half of their AN innervations after the age of 50, 
therefore we chose this CS profile of severe AN fiber loss 
[25-26]. 
Speech stimuli were processed with the three trained DNN-
HA models, to evaluate the auditory feature restoration 
capabilities of the ML algorithms using auditory model 
simulations. The DNN-HA processed stimuli were given to 
the HI CoNNear model with the considered CS profile, in 
order to compare the simulated AN responses of the NH 
CoNNear model to the responses of the HI CoNNear model, 
with and without applying the HA processing. This way, we 
could investigate the difference in responses between the NH 
and HI models, and see how the HA processing affects the 
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output for the HI case, aiming to restore the AN responses to 
the NH level. In this work, we present the processing 
outcomes for the words ‘David draagt’ (English: ‘David 
carries’), extracted from the Flemish Matrix corpus, 
presented at a level of 70 dB SPL relative to the reference 
pressure p0 = 2 ∙ 10 -5Pa, with a sampling frequency of 20kHz 
[27]. The DNN-HA models require an input that is a multiple 
of 256 samples, hence zero-padding was applied at the end 
of the ‘David draagt’ stimulus. For the input stimulus ‘David 
draagt’, we analyzed several metrics obtained from the 
simulated CoNNear AN responses. The first of the four 
presented metrics is the excitation pattern at the level of the 
basilar membrane, reflecting the root-mean-square (RMS) 
over time of the vibration of the BM per CF. The BM 
excitation patterns shows the vibration amplitude of the BM 
in function of the CFs along its length, in response to the full 
input stimulus ‘David draagt’. The second presented metric 
is the excitation pattern at the level of the AN, reflecting the 
RMS over time of the summed AN response, which is the 
summation of the simulated firing rates of the HSR, MSR 
and LSR ANFs, each weighted by their respective number of 
fibers present (for the HI CoNNear model: HHI = 7, MHI = 0 
and LHI = 0; for the NH CoNNear model: HNH = 13, MNH = 
3 and LNH = 3), per CF. The third presented metric is the 
wave-1 response, which is the summation of the summed 
AN response across the different CFs in time, calibrated in 
order to match experimentally recorded wave-1 amplitudes. 
And the last presented metric is the AN summed response 
difference before and after HA processing, showing the 
intensity of AN firing rate per CF in time. 

3. RESULTS 

We evaluated the auditory feature restoration capabilities of 
the three trained ML-based HA algorithms, using auditory 
model simulations as described in the Methods. At the 
conference, we will present the processing outcomes for the 
speech stimulus to investigate which auditory features the 
different HA processing algorithms focused on to 
compensate for CS.  
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