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ABSTRACT

Acoustic-hydrodynamic feedbacks are a common theme
in jet noise. Strong sound emissions are supported by
fluid instabilities, whose core is not necessarily localized
in space. A common example is the feedback-loop insta-
bility of cavity flows, impinging jets or the flow past air-
foils. The feedback-loop is composed of a convective in-
stability, which is usually an instability of the shear layer,
and an acoustic pressure wave or a hydrodynamic non-
local effect. Despite the fact that such a mechanism is
widely accepted, a precise identification of the most sen-
sitive spatial regions underpinning the instability is miss-
ing. Herein, we propose a non-local decomposition of the
structural sensitivity, which allows us to precisely identify
the most sensitive regions of the flow responsible for the
closure of the feedback-loop. The systematic use of these
techniques could be applied in the design of passive flow
control devices.
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1. INTRODUCTION

Turbulent motion is ubiquitous in nature. While the vortex
dynamics associated to turbulence necessarily involves a
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large range of scales, the large coherent structures sup-
porting the fluid motion are commonly issued from a fluid
instability. The nature of fluid instabilities is commonly
classified as absolute and convective [1]. In the latter case
(convectively unstable), the amplitude associated to the
instability grows in a moving frame of reference, whereas
in the former case (absolutely unstable) it grows at the
very location of the source, and subsequently spreads else-
where. Giannetti et al. [2] introduced the concept of struc-
tural sensitivity to identify the wave-maker, that is, the
spatial region where the mechanism that sustains the in-
stability is active. This concept was later generalised to in-
clude base-flow changes, saturation and non-linear effects
[3–8]. While, for many fluid instabilities, the spatial distri-
bution of the structural sensitivity is highly localised, e.g.,
the flow past a rotating particle [9] or the flow past a spin-
ning cylinder [10], many other flow configurations exhibit
fluid instabilities underpinned by a non-local feedback-
loop. The high intensity tonal noise associated to cavity
flows [11], impinging jets [12], the flow past airfoils [13]
or the whistling of a jet past a thick hole [14, 15] is sup-
ported by an acoustic-hydrodynamic feedback. Herein,
we propose a decomposition of the structural sensitivity
tensor, which is not localised in space, to identify the lo-
cal wave-makers composing the feedback loop. In the fol-
lowing, the methodology is introduced in the global linear
stability framework [16], and the extension to a generic
setting integrated by a time-stepping [17] will be the core
of future studies.
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2. METHODOLOGY

2.1 Linear stability

Herein, we introduce the linearised compressible Navier–
Stokes equations in primitive variables [ρ̂, û, ŝ, T̂ , p̂]T .
The linearised equations are(

− iωB|q0 +DF|q0

)
q̂ = 0,

with
B|q0

= diag(1, ρ0I, ρ0T0, 0, 0),

(2)

where the Jacobian operator DF|q0
is detailed in eq. (1).

The primitive variables [ρ̂, û, ŝ, T̂ , p̂]T are the density, ve-
locity, entropy, temperature and pressure fluctuations, re-
spectively. The adjoint equations, on the other hand, read(

iωB|q0 +DF†|q0

)
q̂† = 0,

with
B|q0

= diag(1, ρ0I, ρ0T0, 0, 0),

(3)

where the linear operator DF†|q0
is defined in eq. (4). We

use an absorbing boundary condition, see fig. 1, named the
complex mapping technique [18, 19] for both the direct
and adjoint stability computations.

2.2 Decomposition of the perturbations

We first elaborate on the decomposition of the global
mode q̂ into an acoustic, hydrodynamic and entropic com-
ponent.
In particular, we adopt a Helmholtz-Hodge decomposi-
tion [20] of the perturbation velocity field into a acoustic
(potential) and an hydrodynamic (solenoidal) part:

û = ûac + ûhyd = ∇ϕc +∇×Ψ. (5)

We obtain a Poisson problem after applying the diver-
gence operator to eq. (5). In this case, the potential ϕc

is a solution of the following Poisson equation

∆ϕc = ∇ · û in Ω
∇ϕc · n = û · n on ∂Ω.

(6)

The hydrodynamic component of the velocity is subse-
quently determined by subtracting ûhyd = û − ûac =
û − ∇ϕc. Alternatively, we could have determined
first the stream function Ψ, by taking the curl of
eq. (5) and solving the subsequent vector-Poisson equa-
tion. The Helmholtz decomposition is not necessarily L2-
orthogonal, unless suitable boundary conditions are im-
posed to eq. (6). Herein, we adopt homogeneous boundary

conditions at the far-field. The acoustic and hydrodynamic
pressure components are retrieved by solving an elliptic
problem resulting from the application of the divergence
operator onto the linearised momentum equation, while
only retaining the corresponding fluctuating velocity com-
ponent, cf [21, Ch. 3]. The acoustic and hydrodynamic
components of the fluctuating density and temperature are
recovered by considering the isentropic relationship. Fi-
nally, the entropic component is retrieved by subtraction.

2.3 Identification of the underlying
hydrodynamic-acoustic mechanism underpinning the
feedback-loop

In cases where the global instability is the result of a long-
range feedback-loop, e.g., the interaction between two
travelling waves, a local definition of the wavemaker is not
appropriate and the ”active” region of the flow cannot be
identified by the largest values of the structural sensitivity
map. A further decomposition of fluctuating components
and of the structural properties of the problem is required.
Before, we introduce the localised structural sensitivity,
we briefly recall the concept. The adjoint equations are
herein used to evaluate the effect of a small ”structural
change” of the governing equation in the form of a linear
harmonic term H(q̂) ≡ δ(x− x0)PHC0Pq̂q̂,(

− iωB|q0 +DF|q0

)
q̂ = H(q̂). (7)

C0 is a generic linear operator acting on q̂, and PH a di-
agonal matrix that selects the type of forcing (feedback).
In the following, we neglect mass injection to the sys-
tem, and we simply consider momentum forcing and a
source of heat release, that is, PH = diag(0, I, 1, 0, 0).
The projection operator Pq̂ is also a diagonal matrix that
selects the dependency of the forcing on the perturbation.
The change in the eigenvalue produced by the ”structural”
change of the operator is thus expressed as

iδω = ⟨PHq̂†, δ(x− x0)C0Pq̂q̂⟩
≤ ||C0||||PHq̂†||L2 ||Pq̂q̂||L2

= ||C0||||Ss(x0)||F ,
(8)

while the structural sensitivity tensor is defined as
Ss(x0) ≡ PHq̂† ⊗ Pq̂q̂. The Frobenius norm of this
tensor ||Ss(x0)||F ≡ ||PHq̂†||L2 ||Pq̂q̂||L2 is usually re-
ferred to as the structural sensitivity map. The decompo-
sition of the feedback term allows us to introduce a novel
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DF|q0 q̂ =



u0 · ∇ρ̂+ ρ̂∇ · u0 + û · ∇ρ0 + ρ0∇ · û

ρ̂u0 · ∇u0 + ρ0u0 · ∇û+ ρ0û · ∇u0 +∇p̂− 1

Re
∇ · τ(û)

− γ(γ − 1)
M2

∞
Re

(
τ(û) : D(u0) + τ(u0) : D(û)

)
− γ

Pr Re
∆T̂

+ ρ0T0u0 · ∇ŝ+ ρ0T0û · ∇s0 + ρ̂T0u0 · ∇s0 + ρ0T̂u0 · ∇s0

ρ0T0ŝ+ (γ − 1)T0ρ̂− ρ0T̂

− ρ0T̂ − ρ̂T0 + γM2
∞p̂

(1a)

(1b)

(1c)

(1d)

(1e)

DF†|q0 q̂
† =



− u0 · ∇ρ̂† +
(
u0 · ∇u0

)
· û† + (u0 · ∇s0)ŝ

† + T0

(
(γ − 1)T̂ † − p̂†

)
− ρ0u0 · ∇û† + ρ0û

† · (∇u0)
T − 1

Re
∇ · τ(û†)

− ρ0∇ρ̂† + 2γ(γ − 1)
M2

∞
Re

∇ · (ŝ†τ(u0)) + ρ0T0ŝ
†∇s0

− ρ0T0u0 · ∇ŝ† + ρ0T0T̂
†

ρ0T0ŝ
†u0 · ∇s0 −

γ

Pr Re
∇2ŝ† − ρ0p̂

† − ρ0T̂
†

γM2
∞p̂† −∇ · û†

(4a)

(4b)

(4c)

(4d)

(4e)
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Figure 1: Diagram of the computational domain of
the rounded impinging jet configuration. The phys-
ical domain, represented as a white area, is comple-
mented with a radial absorbing layer (CM), shown as
a light grey shaded zone.

definition of a localised structural sensitivity matrix as

iδωk
j = ⟨q̂†

k, δ(x− x0)C0q̂j⟩
≤ ||C0||||q̂†

k(x0)||||q̂j(x0)||
= ||C0||||S(j,k)

s(x0)||F ,
(9)

where the localised structural sensitivity tensor is defined
as

S(j,k)
s(x0) = PHq̂†

k(x0)⊗Pq̂q̂j(x0) (10)

with j and k chosen among {ac, hyd, s}. In particular, the
new structural sensitivity can provide information about
the cross-interaction between vortical and acoustic com-
ponents of the flow.
Without further discussion, we propose the following de-
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composition of the adjoint mode,

û† = û†
hyd + û†

ac = ∇ϕ†
c +∇×Ψ†,

ŝ† = ŝ†s
ρ̂† = ρ̂†ac + ρ̂†hyd + ρ̂†s ,

p̂† = p̂†ac =
∇ · û†

γM2
∞

T̂ † = T̂ †
ac + T̂ †

s

=
(
ŝ†u0 · ∇s0 −

γ

Pr Re
∆ŝ†

ρ0

)
− ∇ · û†

γM2
∞

.

(11)

which allows us to evaluate quantitatively the interaction
among the different components.

3. NUMERICAL EXAMPLE: ROUNDED
IMPINGING JET

Herein, we apply the previously introduced concept of the
localised structural sensitivity for the case of a rounded
impinging jet, sketched in fig. 1. The decomposed struc-
tural sensitivity map is displayed in fig. 2 for two different
Mach numbers of the jet (MJ ). In the problem of the im-
pinging jet, the feedback loop is initiated by the hydrody-
namic instability of the shear layer (a Kelvin-Helmholtz
wave), which induces an acoustic response (a backward
wave) when it reaches the impinging region. In turn, when
the generated acoustic wave impinges on the nozzle lip
promotes back the hydrodynamic instability, continuing
the loop. With the novel definition, S(hyd,ac)

s identifies
the most sensitive region of the flow where vortical per-
turbations induce an acoustic response, see fig. 2 (a-b).
This region for the impinging jet is expected to be located
near the wall and possibly near sharp corners. The second
(and third) wavemaker of interest corresponds to the exci-
tation of a hydrodynamic response from hydrodynamic (
S
(hyd,hyd)
s ) or acoustic perturbations (S(ac,hyd)

s ), the latter
being displayed in fig. 2 (c-d). Physically, S(hyd,hyd)

s de-
termines the hydrodynamic wavemaker, which in a causal
reasoning, could be argued to be the region initiating the
feedback process, while S

(ac,hyd)
s determines the most

sensitive region of the flow where an acoustic perturba-
tion induces a hydrodynamic excitation, that is, the retro-
action of the acoustic wave into the hydrodynamic insta-
bility.
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Figure 2: (a-b) Map S
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s for a global mode at (a)
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