
10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

PHYSICAL MODELLING OF STIFF MEMBRANE VIBRATION USING
NEURAL NETWORKS WITH SPECTRAL CONVOLUTION LAYERS

Carlos De La Vega Martin*
Queen Mary University of London

Centre for Digital Music

Mark Brian Sandler
Queen Mary University of London

Centre for Digital Music

ABSTRACT

Physical modelling synthesis is currently limited in its ap-
plications due to the high computational cost of some of
the algorithms. Typically, these models are obtained by
discretizing a mathematical model described by ordinary
or partial differential equations, using well-established
methods like finite differences or modal decomposition.
Recent advances in machine-learning have sought to
model these systems of differential equations using spe-
cialised architectures such as the Fourier Neural Opera-
tor (FNO), enabling extremely fast inference times and
resolution-independent computational cost. Building on
recent work extending the FNO approach for its applica-
tion to acoustics problems, we examine the performance
and robustness of these methods in the case of a stiff and
lossy membrane. We show that the FNO approach is only
able to accurately model the behaviour of the membrane
within the range of timesteps used for training, becoming
unstable or decaying rapidly beyond that.

Keywords: fourier neural operator, physical modelling,
stiff membrane, neural networks, spectral convolution

1. INTRODUCTION

In the context of sound synthesis physical modelling is
the use of physically motivated mathematical models to
generate sound. The main advantage of this approach
is that it allows to generate sounds that while physically
plausible are not necessarily physically realizable. This is

*Corresponding author: c.delavegamartin@qmul.ac.uk.
Copyright: ©2023 Carlos de La Vega Martin et al. This is an
open-access article distributed under the terms of the Creative
Commons Attribution 3.0 Unported License, which permits unre-
stricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

particularly useful in the context of musical instruments,
where the goal is to generate sounds that are musically
interesting. Many physical models are based on the solu-
tion of partial differential equations (PDEs) that describe
the physical system of interest. The solution of the PDEs
can be obtained using frequency-domain methods, such
as the functional transformation method (FTM) [1], or
time-domain numerical methods, such as finite difference
time domain (FDTD) methods [2]. The main advantage of
frequency-domain methods is that they are computation-
ally efficient, but they are limited to linear systems. Time-
domain methods are more computationally expensive, but
they can be used to model nonlinear systems.

Recent years have seen an large amount of research
in deep learning and neural networks [3] applied to many
different fields, including audio [4]. Regarding scientific
computing, recent advances in the field of operator learn-
ing [5–7] have shown that neural networks can be used
to approximate the solution of PDEs. In particular recent
work has proposed the use of recurrent neural networks
(RNNs) with spectral convolution layers [7] to model
acoustic systems. In this work we will focus on the evalu-
ation of these recently proposed architectures to model the
vibration of stiff membranes. The code used to generate
the results presented in this paper is available at https:
//github.com/cdelavegamartin/fa2023

In Section 2 we will introduce the concept of operator
learning, and review the network architectures proposed
in [7]. In Section 3 we will introduce the mathematical
model of stiff membrane vibration. In Section 4 we will
explain the experimental setup and present the results, and
in Section 5 we will draw our conclusions.

DOI: 10.61782/fa.2023.0894

2201



10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

2. OPERATOR LEARNING FOR PDES

In the context of this work, we will define an opera-
tor, G, as the mapping between two (possibly infinite-
dimensional) function spaces, which are usually taken to
be Banach spaces, or suitable subsets of them [6, 8]. In a
more formal way,

G : A
(
D;Rda

)
→ B

(
D;Rdb

)
, a 7→ b := G(b), (1)

where A and B are the input and output function spaces,
and D ⊂ Rd is a domain in Rd, with d ∈ N denoting its
dimensionality. Therefore the operator G maps a function
a : D → Rda with da ∈ N components to a function
b : D → Rdb with db ∈ N components.

Modeling time-dependent PDEs can be formulated as
learning the operator Gt1 7→t2 that describes mapping be-
tween an N -dimensional state, u(x, t) = (ui)

N
i=0 at time

t1 to the state at time t2, where x ∈ Rd is the spatial co-
ordinate, and t ∈ R is the time coordinate. The operator
Gt1 7→t2 can be then defined as,

u(x, t2) = Gt1 7→t2(u(x, t1)) (2)

We note that the input and output function spaces are
then assumed to be the identical A = B = U , and the
spatial domain is D = Rd. To make this formulation
compatible with a machine learning approach, we need to
discretize the state u(x, t) in time and space. Our choice
for this discretization is a regular grid of discrete sampled
points xn and timesteps t = kT , where k is a temporal
sampling index and T the sampling period. The regular
sampling in time allows us to define a single discretized
operator that can theoretically be used for extrapolation to
any time t. The choice of a regular grid in space is not
essential, but it will be explained later (See Sec. 2.1) why
this is the natural choice given the architectures chosen
to approximate the operator Gk 7→k+1 in this work. This
yields the tensor U [xn, k], and we can define the opera-
tor Ĝ := Gk 7→k+1 as,

U [xn, k + 1] = Ĝ (U [xn, k]) (3)

Following the notation in [7], we will denote the state
tensor at time k as Uk and ukij... as its elements, where i
is the index of the the state (physical) variable, and j . . .
are the n spatial indices.

The approximation of operators such as Ĝ using neu-
ral networks has been termed as the neural operator ap-
proach [5]. Many different approaches have been pro-
posed for this task [5,9,10], but in this work we will focus

on the Fourier Neural Operator (FNO) approach [5] and
in particular the recurrent architectures derived from it and
originally proposed in [7].

2.1 Spectral Convolution layer

The spectral or fast convolution layer [7] or Fourier layer
[5] is the fundamental building block of the FNO ap-
proach. It is composed of a Fourier transform followed
by a affine transform, and an inverse Fourier transform.

In mathematical terms the operation of the layer on
the internal state tensor H with elements hνj... can be
written as follows,

S (hνj...) = F̃−1
[∑

ν

Aνκj...F̃ (hνj...) + bκj...

]
(4)

where F̃ denotes an operator encompassing padding,
applying the FFT and truncating the spectrum to remove
negative frequency components. Conversely F−1 encom-
passes reconstructing the negative frequency components,
applying the inverse FFT and removing the padding. The
indices ν and κ correspond the channels (internal state
variables) of the input and output tensors. The coeffi-
cients of Aνκj... and bνj... are the trainable parameters of
the layer and parametrized as complex numbers. This for-
mulation has some changes respect to the original formu-
lation in [5] and used in our reference model from [11].
First, in the original proposal only a fixed number of FFT
bins, starting in the lower frequencies, were used, effec-
tively zeroing the high frequency components of the spec-
trum. This can be seen as a kind of lowpass filtering, adn
it was argued that it didn’t significantly degrade perfor-
mance while reducing the number of trainable parame-
ters [5]. Second, the spatial dimensions of the input and
output tensors are padded to ensure that the convolution
is non-cyclic [7], which was not the case in the origi-
nal proposal [5]. In the original implementation of the
FNO [5], this was argued to be unnecesary since a train-
able weighted skip connection in parallel to the spectral
convolution layer was able to compensate in the case of a
non-periodic input.

2.2 FNO-derived architectures

In this work we evaluate the performance of three differ-
ent architectures for the approximation of operator Ĝ in
Eq. 3. The reference model, markov neural operator
(MNO) [11], uses a modified version of the FNO architec-
ture proposed in [5]. The main aspects are the adition of

2202



10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

F1

S1 φ

D1

+ F2 FMHk Hk+1

Figure 1. Block diagram showing the recurrent cell
of the FRNN structure (dependencies of H on dis-
crete time index k are denoted in the superscript for
brevity). Taken from [7] and reproduced with per-
mission of the authors.

a fixed padding to the input, and the conditioning with the
coordinates of the spatial grid, concatenated to the input
tensor. The mapping from the internal state tensor to the
output tensor is done using a two linear layers with a non-
linear activation inbetween, whereas the input mapping is
a single linear layer. The MNO uses the GeLU activation
function [12]. The FNO architecture can be thought of
as a recurrent neural network (RNN) with either a mul-
tiple [5], or single input time step [11, 13], depending on
the implementation.

2.2.1 FRNN

The Fourier recurrent neural network (FRNN) [7] is a
recurrent architecture based on the spectral convolution
layer described in section 2.1. It maps, through the
composition of a variable number of blocks, subsequent
timesteps of the internal state of the network,

Hk+1 = FM ◦ FM−1 ◦ . . . F1

(
Hk
)
, (5)

where H is a tensor containing the internal states of the
system at all spatial-sampling points, and the operation
Fm(H) is given by

Fm(H) = φ (Sm(H)) +Dm(H) (6)

where S is the described spectral convolution layer 4, φ is
an elementwise activation function such as tanh or ReLU
and D represents a weighted skip connection. The FRNN
architecture is illustrated in figure 1. Note that the skip
connection happens after the activation function, which
is different from the MNO architecture, where the skip
connection is before the activation function.

2.2.2 FGRU

The Fourier gated recurrent unit (FGRU) [7] is a recur-
rent architecture derived from the gated recurrent unit

• +

Sz σ

1−

•

Sr

σ

tanh

Sh

•

Hk

R

Ĥ

Z

Hk+1

Figure 2. Block diagram showing the recurrent cell
of the FGRU structure (dependencies of H on dis-
crete time index k are denoted in the superscript for
brevity). Taken from [7] and reproduced with per-
mission of the authors.

(GRU) [14] incorporating the spectral convolution layer
described in section 2.1. The operation of the FGRU can
be written as follows,

Z = σ
(
Sz
(
Hk
))
, (7)

R = σ
(
Sr
(
Hk
))
, (8)

Ĥ = tanh
(
Sh
(
R�Hk

))
, (9)

Hk+1 = (1− Z)�Hk + Z� Ĥ, (10)

where H is again the internal state tensor, Sz , Sr and Sh
are spectral convolution layers and σ is the element-wise
sigmoid activation function. The FGRU architecture is il-
lustrated in figure 2.

2.2.3 Input and output mapping

The number of internal states for these recurrent architec-
tures can be freely specified, and therefore we require an
inputMin and outputMout mapping between the physi-
cal state tensor U and the internal state tensor H. These
are parametrized as linear maps, and can be written as

h0νj... =Min

(
u0ij...

)
=
∑
κ

Aνκu
0
κj... + bν , (11)

ukij... =Mout
(
hkκj...

)
=
∑
κ

Ãiκh
k
κj... + b̃i, (12)

Using these linear embeddings, is possible to train the net-
work using backpropagation through time (BPTT) [15], as
seen in Figure 3.

2203



10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

Min Cell

Mout

Cell

Mout

Cell

Mout

U0 H0 H1

U1 U2

Hk

Uk

Figure 3. Block diagram showing the repeated ap-
plication of a GRU or RNN cell along with the input
and output mapping layers. Hk denotes the internal
state of the NN, and Uk denotes the physical state of
the system respectively, at step k. Taken from [7] and
reproduced with permission of the authors.

3. THE LINEAR STIFF MEMBRANE

The linear stiff membrane is a 2D system that can be used
to model a drum head or a flexible thin plate [2, 16, 17].
The system is described by the following PDE,

ρHü(x, t) = T∇2u(x, t)− EH3

12(1− ν2)
∆2u(x, t) (13)

− 2d0u̇(x, t) + 2d1∇2u̇(x, t)

where u(x, t) is the displacement of the membrane at
position x and time t, ρ is the mass density, H is the
thickness of the membrane, T is the tension, E is the
Young’s modulus, ν is the Poisson ratio, d0 is a frequency-
independent damping coefficient and d1 is a frequency-
dependent coefficient. Note that partial time derivatives
are denoted by a dot, ∇2 is the Laplace operator and
∆2 = ∇4 is the bi-laplacian. We can combine the phys-
ical parameters and scale the spatial coordinates x, y by
the length of the plate along the x-axis, Lx,

ü(x, t) = γ2∇2u(x, t)− κ2∆2u(x, t) (14)

− 2σ0u̇(x, t) + 2σ1∇2u̇(x, t)

where γ, κ, σ0 and σ1 have units of Hz, and u(x, t) is in
m. We consider the PDE to be defined over a rectangular
domain Ω ⊂ R[0,1]×[0,ratio] where ratio = Ly/Lx and
subject to clamped boundary conditions,

u(x, t) = 0 for x ∈ ∂Ω, (15)
u′(x, t) = 0 for x ∈ ∂Ω. (16)

where ∂Ω is the boundary of the domain Ω, and u′ de-
notes the space derivative in the direction normal to the
boundary of the domain.

3.1 Damping coefficients

In order to obtain realistic values for the damping coeffi-
cients σ0 and σ1, we use the following approximate for-
mulae [2], which are valid for realistic values of the PDE
parameters,

ξ(ω) =
−γ2 +

√
γ4 + 4κ2ω2

2κ2
(17)

σ0 =
6 ln(10)

ξ (ω2)− ξ (ω1)

(
ξ (ω2)

T60 (ω1)
− ξ (ω1)

T60 (ω2)

)
(18)

σ1 =
6 ln(10)

ξ (ω2)− ξ (ω1)

(
− 1

T60 (ω1)
+

1

T60 (ω2)

)
(19)

where ω is the angular frequency, ω1 and ω2 are the lower
and upper angular frequencies at which the 60dB decay
time, T60 is specified.

4. EXPERIMENTS

4.1 Data generation

To generate the datasets for training and evaluation, a nu-
merical method was used to solve the PDE. The domain
was discretized using a uniform grid with Nx ×Ny grid-
points, and the spatial partial derivatives were discretized
using a centered finite difference scheme (FDM) with
2nd order accuracy. The resulting system of ODE was
then integrated numerically using the SciPy python library
[18], with a sampling frequency of 48 kHz (a timestep of
20.833 µs). Four combinations of the PDE parameters γ
and κ were used to generate the datasets, (1) γ = 1.0,
κ = 0.1, (2) γ = 1.0, κ = 1.0, (3) γ = 100.0, κ = 0.1,
(4) γ = 100.0, κ = 1.0. The PDE parameters were chosen
to cover a range of numerical behaviour, with only (3) cor-
responding to roughly a Mylar drumhead [16]. The damp-
ing coefficients were set to realistic values, corresponding
to a 60dB decay time of 5 s at 100 Hz and 3 s at 2 kHz. The
dimensions ratio Ly/Lx was chosen as 0.95. For each of
the four combinations of PDE parameters, 1024 pairs of 1
input state and 39 output steps were generated, of which
a 10% (103) were used for evaluation and the remaining
90% (921) were used for training. This corresponds to
approximately 0.8 ms.

4.2 Training details

The input to the model is a tensor of sizeB×Nx×Ny×2,
where B is the batch size, Nx and Ny the number of grid-

2204



10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

points in the x and y directions and we have 2 state vari-
ables, the initial displacement u0 = u(t = 0, x, y), and
velocity v0 = u̇(t, x, y)|t=0. The output is a tensor of
size B × NT × Nx × Ny × 2, where NT is the num-
ber of output steps the first channel contains the displace-
ment and the second channel contains the velocity. We
employed the MSE between the target and predicted out-
put sequences as the loss function, using BPTT to back-
propagate the gradients through time. To train the models,
we used the same hyperparameters as in [7]. We used the
AdamW optimizer [19] with default parameters, and the
1-cycle learning-rate scheduling scheme [20], modulating
from a learning rate of 10−4 to 10−3. Training was con-
ducted for 5000 epochs with batch size set to 400, as that
is the maximum that would fit in the GPU memory. The
training was done on a single GPU (Nvidia A100).

4.3 Model validation

Three (3) different random seeds were used both when in-
stantiating and training the models, and when generating
the datasets. This resulted in 9 possible combinations of
trained models and evaluation datasets, for each of the 4
different PDE parameter combinations. In 1 we can see
the aggregated mean and standard deviation for each com-
bination of PDE paramenters and NN architecture, FGRU,
FRNN and the reference MNO architecture, REF. Note
that in the case of the REF architecture with γ = 1.0 and
κ = 1.0, one initial condition was removed due to a di-
verging result to obtain the statistics. This was run 85
of the validation data generated with seed=1, and evalu-
ated on the model initialised with seed=2. Preliminary
investigations didn’t reveal any obvious reason for this be-
haviour, although it is likely to be related to the instability
showed by the model when evaluating the extrapolation
performance. A a more in-depth study of this anomaly is
left for future work.

As we can see in Table 1 the performance of the three
architectures is comparable, with the FGRU performing
better for γ = 1.0, κ = 0.1 and FRNN and REF models
performing better for γ = 100.0, κ = 0.1 and γ = 100.0,
κ = 1.0. In the case of γ = 1.0, κ = 1.0 the models per-
form simlarly, within 1 standard deviation of each other.

4.3.1 Extrapolation

A dataset of 30 initial conditions and 2000 timesteps
(41.7 ms) were generated for each combination of PDE
parameters, and used to evaluate the extrapolation per-
formance of the models trained. The initial conditions

Table 1. Results MSE mean (std). ∗ Excluding a
single diverging evaluation.

Displacement Velocity

γ κ Model

1.0 0.1 FGRU 0.0007 (0.0001) 0.0046 (0.0011)
FRNN 0.0028 (0.0024) 0.0064 (0.0039)
REF 0.0019 (0.0009) 0.0083 (0.0020)

1.0 FGRU 0.0039 (0.0007) 0.0092 (0.0015)
FRNN 0.0020 (0.0014) 0.0062 (0.0047)
REF∗ 0.0023 (0.0005) 0.0074 (0.0007)

100.0 0.1 FGRU 0.0050 (0.0002) 0.0081 (0.0008)
FRNN 0.0011 (0.0007) 0.0023 (0.0015)
REF 0.0017 (0.0002) 0.0028 (0.0003)

1.0 FGRU 0.0072 (0.0002) 0.0131 (0.0005)
FRNN 0.0012 (0.0003) 0.0032 (0.0010)
REF 0.0016 (0.0001) 0.0037 (0.0004)

are generated using the same method as for the valida-
tion dataset, but with a different random seed. The dis-
placement MSE for the three models trained on three of
the PDE parameter combinations can be seen in Figures
4 and 5 and 6. The performance of the REF model for
γ = 100.0, κ = 1.0 is very similar to the γ = 100.0,
κ = 0.1 case, and the velocity MSE behaves qualitatively
in the same manner as the displacement in all cases, with
the model outputs always diverging in the cases the dis-
placement diverges.

The extrapolation performance is extremely poor for
all models, with the accuracy falling off rapidly beyond
the timesteps covered by the training data in all cases. The
degradation in performance happens very soon after the
end of the time span covered by the training data, as it
can be seen in Figure 7, and this is the case for all com-
binations of PDE parameters. The FGRU output decays
rapidly to zero in all cases, while the FRNN and REF out-
put diverges for many initial conditions, two examples of
which can be seen in Figures 8 and 9. We can see that the
REF model diverges for almost all initial conditions when
γ = 100.0, and for over two thirds of the runs for γ = 1.0,
while the FGRU model doesn’t diverge in any case, as
expected from the GRU architecture. The FRNN model
divergence behaviour is the most unpredictable one, with
the divergence rate varying from 0% to 100% depending
on the PDE parameters and initial conditions. There is
also no correlation between the values of γ and κ and the
divergence rate, as the FRNN model diverges for both low

2205



10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

Table 2. Rate of diverging runs after 2000 timesteps.
Rate of diverging runs

mean min max
γ κ Model

1.0 0.1 FGRU 0.0000 0.0000 0.0000
FRNN 0.8333 0.5000 1.0000
REF 0.7556 0.6000 0.9333

1.0 FGRU 0.0000 0.0000 0.0000
FRNN 0.3333 0.0000 1.0000
REF 0.6778 0.0333 1.0000

100.0 0.1 FGRU 0.0000 0.0000 0.0000
FRNN 0.3222 0.0000 0.6333
REF 0.9889 0.9667 1.0000

1.0 FGRU 0.0000 0.0000 0.0000
FRNN 0.8333 0.6000 1.0000
REF 1.0000 1.0000 1.0000

and high values of γ and κ. A summary of the extrapola-
tion performance regarding instability for all models and
PDE parameter combinations can be seen in Table 2.

These stands in contrast with the previous results for
the 2D wave equation presented in [7], where the REF
model was able to extrapolate up to twice the training
length. Although the system at hand is slightly more com-
plicated, it is still linear, with the frequencies and wave
speeds being at most 1% (case γ = 100.0, κ = 0.1) or
10% (cases γ = 100.0, κ = 1.0 and γ = 1.0, κ = 0.1)
higher than the ones in the 2D wave equation [21]. An
initial guess for the significant difference in performance
could be that the previous results [7] were obtained train-
ing the model using data generated with frequency do-
main methods, specifically the functional transformation
method [1] and the Fourier-Sine transform [22]. Due to
the bandlimiting imposed by selecting a finite number of
modes, the training data might have been more suitable
for representation with architectures using spectral con-
volution layers. The exploration of this hypothesis is left
for future work.

5. CONCLUSION

In this work evaluated the performance of some recently
proposed neural network architectures [7] for solving the
stiff membrane PDE. While the validation loss is compa-
rable to the previously published results for other acoustic
systems [7], none of of the architectures are able to ex-
trapolate in our case, and in many instances they present
unstable behaviour. More investigation is needed to un-

0 1000
Time step

0

1

2

3

4

5

di
sp

la
ce

m
en

t M
SE

FGRU

0 1000
Time step

FRNN

0 1000
Time step

Ref
seed=1
seed=2
seed=0

Figure 4. Extrapolation results for γ = 1.0 and κ =
0.1. Shaded in blue is the timestep span covered by
the training data.

0 1000
Time step

0

1

2

3

4

5

di
sp

la
ce

m
en

t M
SE

FGRU

0 1000
Time step

FRNN

0 1000
Time step

Ref
seed=1
seed=2
seed=0

Figure 5. Extrapolation results for γ = 1.0 and κ =
1.0. Shaded in blue is the timestep span covered by
the training data.

0 1000
Time step

0

1

2

3

4

5

di
sp

la
ce

m
en

t M
SE

FGRU

0 1000
Time step

FRNN

0 1000
Time step

Ref
seed=1
seed=2
seed=0

Figure 6. Extrapolation results for γ = 100.0 and
κ = 0.1. Shaded in blue is the timestep span covered
by the training data.

2206



10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

0 25
Time step

0.00

0.05

0.10

0.15

0.20

0.25

0.30

di
sp

la
ce

m
en

t M
SE

FGRU

0 25
Time step

FRNN

0 25
Time step

Ref
seed=1
seed=2
seed=0

Figure 7. Close up of the extrapolation results for
γ = 100.0 and κ = 0.1. Shaded in blue is the
timestep span covered by the training data.

St
ep

 =
 0

FGRU FRNN REF Truth

St
ep

 =
 3

9
St

ep
 =

 7
8

St
ep

 =
 1

99
8

x (/m)

y 
(/m

)

Figure 8. Example output for γ = 1.0 and κ = 0.1.
The initial condition is highlighted in red in Fig. 4.
Blank space indicates that the model diverged.

St
ep

 =
 0

FGRU FRNN REF Truth

St
ep

 =
 3

9
St

ep
 =

 7
8

St
ep

 =
 1

99
8

x (/m)

y 
(/m

)

Figure 9. Example output for γ = 100.0 and κ =
0.1. The initial condition is highlighted in red in Fig.
6. Blank space indicates that the model diverged.

derstand the difference in performance.

6. ACKNOWLEDGMENTS

This research utilised Queen Mary’s Apocrita HPC fa-
cility, supported by QMUL Research-IT. http://doi.
org/10.5281/zenodo.438045

7. REFERENCES

[1] L. Trautmann and R. Rabenstein, Digital Sound Syn-
thesis by Physical Modeling Using the Functional
Transformation Method. Kluwer Academic/Plenum
Publishers, 2003.

[2] S. Bilbao, Numerical Sound Synthesis. Chichester,
UK: John Wiley & Sons, Ltd, Oct. 2009.

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep
Learning. MIT Press, 2016.

[4] H. Purwins, B. Li, T. Virtanen, J. Schluter, S.-Y.
Chang, and T. Sainath, “Deep learning for audio signal
processing,” IEEE J. Sel. Top. Signal Process., vol. 13,
pp. 206–219, May 2019.

2207



10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

[5] Z. Li, N. B. Kovachki, K. Azizzadenesheli, B. Liu,
K. Bhattacharya, A. Stuart, and A. Anandkumar,
“Fourier Neural Operator for Parametric Partial Dif-
ferential Equations,” in International Conference on
Learning Representations, May 2021.

[6] S. Lanthaler, S. Mishra, and G. Karniadakis, “Error
estimates for DeepOnets: A deep learning framework
in infinite dimensions,” Transactions of Mathematics
and Its Applications, 2022.

[7] J. D. Parker, S. J. Schlecht, R. Rabenstein, and
M. Schäfer, “Physical Modeling using Recurrent Neu-
ral Networks with Fast Convolutional Layers,” in Pro-
ceedings of the 25th International Conference on Dig-
ital Audio Effects (DAFx20in22), (Vienna, Austria),
June 2022.

[8] N. Kovachki, S. Lanthaler, and S. Mishra, “On Uni-
versal Approximation and Error Bounds for Fourier
Neural Operators,” Journal of Machine Learning Re-
search, vol. 22, no. 290, pp. 1–76, 2021.

[9] Z.-Y. Li, N. B. Kovachki, K. Azizzadenesheli, B. Liu,
K. Bhattacharya, A. Stuart, and A. Anandkumar,
“Neural operator: Graph kernel network for partial
differential equations,” ICLR 2020, 2020.

[10] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karni-
adakis, “Learning nonlinear operators via DeepONet
based on the universal approximation theorem of op-
erators,” Nat Mach Intell, vol. 3, pp. 218–229, Mar.
2021.

[11] Z. Li, M. Liu-Schiaffini, N. B. Kovachki, K. Aziz-
zadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and
A. Anandkumar, “Learning Chaotic Dynamics in Dis-
sipative Systems,” in Advances in Neural Information
Processing Systems, Oct. 2022.

[12] D. Hendrycks and K. Gimpel, “Gaussian Error Lin-
ear Units (GELUs).” http://arxiv.org/abs/
1606.08415, June 2016.

[13] A. Tran, A. Mathews, L. Xie, and C. S. Ong, “Factor-
ized Fourier Neural Operators,” in International Con-
ference on Learning Representations, Feb. 2023.

[14] K. Cho, B. van Merriënboer, D. Bahdanau, and
Y. Bengio, “On the Properties of Neural Machine
Translation: Encoder–Decoder Approaches,” in Pro-
ceedings of SSST-8, Eighth Workshop on Syntax,
Semantics and Structure in Statistical Translation,

(Doha, Qatar), pp. 103–111, Association for Compu-
tational Linguistics, Oct. 2014.

[15] P. Werbos, “Backpropagation through time: What it
does and how to do it,” Proceedings of the IEEE,
vol. 78, pp. 1550–1560, Oct. 1990.

[16] N. H. Fletcher and T. D. Rossing, The Physics of Musi-
cal Instruments. New York, NY: Springer New York,
1991.

[17] A. Torin, Percussion Instrument Modelling in 3D:
Sound Synthesis through Time Domain Numerical
Simulation. PhD thesis, University of Edinburgh,
2016.

[18] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haber-
land, T. Reddy, D. Cournapeau, E. Burovski, P. Pe-
terson, W. Weckesser, J. Bright, S. J. van der Walt,
M. Brett, J. Wilson, K. J. Millman, N. Mayorov,
A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J.
Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas,
D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen,
E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, and P. van Mulbregt, “SciPy
1.0: Fundamental algorithms for scientific computing
in Python,” Nat Methods, vol. 17, pp. 261–272, Mar.
2020.

[19] I. Loshchilov and F. Hutter, “Decoupled Weight De-
cay Regularization.” http://arxiv.org/abs/
1711.05101, Jan. 2019.

[20] L. N. Smith and N. Topin, “Super-convergence: Very
fast training of neural networks using large learn-
ing rates,” in Artificial Intelligence and Machine
Learning for Multi-Domain Operations Applications,
vol. 11006, pp. 369–386, SPIE, May 2019.

[21] P. M. Morse and K. U. Ingard, Theoretical Acous-
tics. International Series In Pure And Applied Physics,
McGraw-Hill, 1st edition ed., 1968.

[22] S. Bilbao, “Modal-Type Synthesis Techniques for
Nonlinear Strings with an Energy Conservation Prop-
erty,” in Proceedings of the 7th International Confer-
ence on Digital Audio Effects (DAFx04), 2004.

2208


