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ABSTRACT

Birdsong analysis requires a segmentation step to isolate

syllables. It’s a laborious task requiring expertise while

subject to human bias and error. Automated methods for

birdsong analysis are valuable in biology and linguistics.

However, current models need large labeled datasets or at

least isolated syllables after human-aided segmentation.

Although some models are automatic during the deploy-

ment phase, there is no method for avoiding costly an-

notation during the development phase. Also, this issue

underlies a significant weakness of current models, the

lack of consistency and generalization across datasets and

birds since there are no globally known rules for birdsong

syntax. We argue that an automated method is necessary

to achieve this feat, where human intervention in the an-

notation process should be avoided as much as possible.

We leverage a semi-supervised model to get consistent

segmentation free of human bias. The model achieved

near-expert results using a few labeled songs to segment

hours of recordings. Moreover, we show the possibility

of a species-specific model instead of the commonly used

individual-specific ones. Such a method opens the venue

for merging clustering and segmentation methods to pro-

pose a fully automated framework and accelerate research

in fields that study birdsong.

Keywords: birdsong analysis, syllable segmentation,
semi-supervised learning, deep learning

*Corresponding author: houtan.ghaffari@ugent.be.
Copyright: ©2023 Houtan Ghaffari et al. This is an open-access
article distributed under the terms of the Creative Commons At-
tribution 3.0 Unported License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the orig-
inal author and source are credited.

1. INTRODUCTION

The song acquisition in singing bird species resembles

behavioral, neural, and genetic similarities to humans’

speech acquisition [1,2]. These characteristics make them

a proper model for gaining insights into neural mecha-

nisms of sensory-motor learning, plasticity, and neuroge-

nesis [1, 3]. Moreover, studying vocal communication in

animal models improves our understanding of the neuro-

genetic basis for speech and communication disorders [4].

The utility of statistical models of the birds’ vocal be-

havior spans a diverse spectrum of biological and linguis-

tic studies [5, 6]. However, creating such models requires

annotating days of recordings in the controlled lab envi-

ronment. The data should be clean to prevent propagating

error to the downstream tasks, unlike open-field experi-

ments for conservation that are more tolerant to noisy pre-

dictions [7].

The canonical procedure to annotate birdsong con-

sists of two steps, segmentation and labeling [8]. Most

analyses require a segmentation at the level of vocal units

called syllables [2, 5]. First, the song is segmented by

an amplitude thresholding algorithm into syllables [8–10].

Afterward, the expert goes over the result to add the

missed syllables, remove noise or unwanted patterns taken

as a syllable, and adjust the boundaries of each detected

syllable in time. The next step is an arbitrary label as-

signment to each isolated syllable to form coherent and

mutually exclusive groups by subjective auditory and vi-

sual assessment of the expert(s). It’s a time-consuming

and labor-intensive procedure that requires expertise.

Despite their prevalence in bioacoustics, threshold-

ing segmentation algorithms are often explained without

enough rigor or hard to reproduce due to lengthy heuristics

[9,10]. Also, each bird and recording condition needs dif-

ferent parameters found manually by trial and error, even
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for individuals of the same species. Moreover, for birds

with complex songs (e.g., canaries), a single threshold pa-

rameter can’t find all the syllables due to their song vari-

ability [5]. Such segmentation methods are not automated

enough to save time in practice. It’s also noteworthy that

the experts need to manually discard some syllable-like

vocal units for not belonging to a song (e.g., bird calls) or

being badly vocalized or ambiguous [11]. Also, a vocal

pattern might be broken into two syllables or taken as one

based on the decision of the annotator(s) [5, 11]. All of

these hard decisions contribute to inconsistent annotation

across trials.

The problem with subjective annotation exacerbates

in the labeling stage. The syllable categories are defined

separately for each individual since there are no globally

known rules for animal vocal analysis, unlike human lan-

guages. Hence, the labeling procedure is not generaliz-

able across datasets, creating extra labor and ambiguity

in cross-laboratory and cross-species comparisons [4,12].

Prior work has emphasized the necessity to formalize the

birdsong for proper use as a model system for human

speech and cognition evolution [2]. These observations

call for methods free of human bias in segmentation and

labeling, which can generalize across birds and datasets.

Moreover, it’s hard to collect sufficient data for training

separate models for each individual, especially with deep

neural networks that have shown superior performance to

prior birdsong models [5, 6, 13, 14]. Hence, having a uni-

fied segmentation method and a shared set of syllable cat-

egories (at least within a species) can provide the models

with more data on top of consistency [6].

For the labeling problems discussed here, unsuper-

vised classification and representation of the syllables

have shown promising results [4, 6, 12, 13, 15]. However,

clustering models require isolated syllables. Thus, the

need to address the segmentation challenge first. Cohen

et al. [5] proposed to train a convolutional-recurrent neural

network on frame-level labeled spectrograms of the songs.

They achieved good results using small to moderate anno-

tations, even for birds with complex songs. They intelli-

gently circumvented the segmentation step by classifying

the non-syllable frames as background. However, the ex-

perts’ subjective labeling challenge remains open since it

wasn’t a binary segmentation task but categorization. The

fully supervised methods are individual-specific and don’t

scale well with the number of birds unless adequate anno-

tation is available for all birds [5, 16].

Leveraging unlabeled data has shown success in Bioa-

coustics [14, 15, 17, 18]. One strategy to reduce the re-

liance on human annotation and mine the information

from uncurated data is semi-supervised learning [19]. The

general goal of this paradigm is to learn the high-level

structures from unlabeled data and only rely on the an-

notations for learning the fine-grained details of a given

task [20].

Many semi-supervised algorithms utilize the clus-

ter assumption, which states that the decision boundary

should lie in low-density regions of the feature space

(i.e., to reduce the mistakes by small perturbations) [21].

Grandvalet and Bengio [22] argued that unlabeled data

are not necessarily helpful for discriminators unless the

classes are well separated. They used the entropy of the

model’s predictions as a measure of class overlap and pro-

posed to minimize it for unlabeled data as a regulariza-

tion. Pseudo-labeling [23] is another effective method

equivalent to entropy regularization [22] where the model

first predicts unlabeled data and then gets trained simul-

taneously on labeled and pseudo-labeled samples (a.k.a.

self-training). The ’pseudo’ means the labels come from

the model rather than a human. However, such methods

suffer from reinforcing their errors during training (a.k.a.

confirmation bias). The soft pseudo-labels are more in-

formative than hard ones since the models are prone to

propagating mistakes from overconfident wrong predic-

tions [24]. Also, recent semi-supervised methods only

use unlabeled examples that the model can predict con-

fidently [25]. Hence, incorporating soft and confident

pseudo-labels can alleviate the confirmation bias.

Our contribution is providing an automated method

for the time-consuming segmentation step in the birdsong

analysis using small annotation. It serves as the first step

in a fully automated framework for a data-efficient, gener-

alizable, and consistent birdsong annotation. We lever-

aged the Mean Teacher [26] semi-supervised algorithm

with only soft [24] and confident [25] predictions to train

a neural network for syllable segmentation. The model

can cleanly segment hours of recordings while requiring

only a few seconds of labeled songs. We also provide ex-

perimental evidence on the generalization of this method

to multiple individuals, which showed the possibility of a

global model for a species.

2. METHODOLOGY

2.1 Data

The four Bengalese finches dataset is from a public repos-

itory kindly published by [27]. The recordings have a
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sampling rate of 32 kHz, annotated by temporal position

and category of the syllables. The unannotated files and

ones longer than 30 seconds were removed, resulting in

148 recordings for the bird with id ”bl26lb16”, 767 for

”gr41rd51”, 780 for ”gy6or6”, and 337 for ”or60yw70”.

The three canaries dataset is generously open-sourced

by [5] (please see the reference for related links). The

recordings have a sampling rate of 44.1 kHz and are fully

annotated. Since this dataset was large, 300 recordings

were sampled randomly from each canary.

For data preparation, the waveforms were high-pass

filtered at 500 Hz and transformed to a power spectro-

gram using a centered fft window of 512 samples and a

hop length of 64. The spectrograms were compressed to

the decibel scale and further normalized to [0, 1] range by

min-max normalization. Finally, the first row of the spec-

trograms (DC) was discarded.

To formalize the notation, let’s denote the input space

by X ∈ R
F×T , where F stands for the frequency bins

and T indicates the number of frames. The output space

is shown by Y ∈ {0, 1}T , which is a sequence of labels for

each input frame. Therefore, the labeled dataset is shown

by DL = {(xi, yi)|(xi, yi) ∈ (X ,Y)}NL
i=1 and the un-

labeled one as DU = {xi|xi ∈ X}NU
i=1 where NL and

NU denote the size of the datasets. Since this is a pres-

ence/absence segmentation task, only the temporal posi-

tion of the syllables was used where 1 means part of a

syllable and 0 means irrelevant frame.

2.2 Thresholding Algorithm

There are three baseline thresholding algorithms, named

thresholding-A, B, and C, in descending order of qual-

ity. The thresholding-C is a general algorithm deployed

by the authors following standard steps: (i) high-pass fil-

tering at 500 Hz to reduce noise, (ii) Hilbert envelope ex-

traction, (iii) smoothing using a Hann window, and (iv)

thresholding to extract the uninterrupted sequence of sam-

ples as syllables. The threshold was adaptively set to the

envelope’s average for each recording. This algorithm re-

flects the case of blindly applying a thresholding method

without laborious tuning by an expert. The algorithms A

and B were adapted from [28], which are specifically tai-

lored for the Bengalese finches of [27]. The thresholding-

B uses a sophisticated and manually tuned algorithm that

uses experimentally hard-coded threshold value, species-

tailored band-pass filtering, ignoring short gaps to attach

neighboring segments, and discarding segments shorter

than a minimum expected syllable duration for the se-

lected birds. This is the segmentation method with de-

fault parameters in [28]. The thresholding-A further uses

the tuned values of these parameters for each individual

Bengalese finch (minimum silent gap, minimum syllable

duration, and threshold value). In terms of automation,

algorithms A and B require expertise and labor, but C is

fully automated. However, it is applied blindly without

using prior knowledge about the bird’s vocal behavior.

2.3 Mean Teacher Algorithm

Many semi-supervised algorithms are formulated with

consistency regularization loss function [26, 29–31].

Mean Teacher [26] is one such method that uses two iden-

tical models to play the teacher and student roles. Let’s

denote the student’s predictive function and output by:

ŷi = p(yi|xi, η; θ) (1)

where p(yi|.) ∈ [0, 1] represents the model’s predic-

tive function, the θ represents its parameters, and η rep-

resents noisy operations such as data augmentation and

dropout [32]. Similarly, for the teacher:

ŷ′i = p(yi|xi, η
′; θ′) (2)

There are two loss functions for the student model in

this framework. One is the cross-entropy of ground truth

and student predictions for the labeled examples:

Ls(θ) = − 1

NL

∑

(xi,yi)∈DL

yi log ŷ + (1− yi) log (1− ŷ)

(3)

The second loss is the consistency between the stu-

dent and teacher in predicting two differently augmented

views of the unlabeled examples. This loss function is

weighted using a sigmoid ramp-up function to decrease

its importance in the first few epochs of training since the

teacher is no better than the student at first [26, 33]. The

consistency loss is the difference between the teacher and

student predictions:

Lc(θ) = − 1

NU

∑

(xi)∈DU

we ∗ d(ŷi, ŷ′i) (4)

where we is a coefficient from sigmoid ramp-up at the cur-

rent epoch [26]. The cross-entropy was used for the dif-

ference function d , but mean-squared-error is also effec-

tive with better theoretical properties [26, 33]. A random
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amplitude gain modulation and Gaussian noise were ap-

plied to the waveform for data augmentation. The time

and frequency masking [34] were not beneficial for this

task. Also, the student’s input was augmented heavier

than the ones for the teacher. It’s important to use noise in

the model’s forward pass for Mean Teacher to work prop-

erly. A strong dropout in the student can provide it, but

it is not necessary for the teacher [26]. The teacher is not

optimized with gradient descent, but with an exponential

moving average of its parameters and the ones from the

student. Hence, the gradient of Eqn. (4) is used for train-

ing the student, but the teacher’s parameters at step t gets

updated by the following formula:

θ′t = αθ′t−1 + (1− α)θt (5)

where α determines how quickly the teacher should incor-

porate the student’s information at the current step (lower

α means faster change for the teacher). Following the [26]

ablations and our observations, α = 0.99 was used for the

first 200 epochs and increased to α = 0.999 for another

100 epochs of training.

The total cost function is the sum of the Eqn. (3) and

Eqn. (4) while the latter being weighted by a sigmoid

ramp-up that reaches the value of 1 in 100 epochs. To alle-

viate the confirmation bias, soft pseudo-labels were used

while incorporating only the confident predictions for the

consistency loss [24, 25]. Any prediction below 0.2 and

above 0.8 was considered as confident. During training,

the labeled songs were fed to the model in full length, but

the unlabeled ones were randomly cropped into 5-seconds

chunks at each iteration to speed up the training by batch-

ing. After the training, the teacher’s predictions on the

full-length recordings were taken as the segmentation.

2.4 Model

A mixture of convolution and recurrent layers is a pop-

ular structure for time-series processing, especially when

the data is scarce [5, 35, 36]. The model consists of three

2d-convolution blocks, each one having a LeakyReLU ac-

tivation, a max-pooling layer that preserves the tempo-

ral dimension, and a 2d-dropout. After the convolution

blocks, it has a bi-directional LSTM layer followed by

a 1d-dropout, ending with a linear projection for the bi-

nary task of syllable detection. The channel-wise dropout

[37] alleviates the overfitting while injecting the noise into

the model required by the semi-supervised frameworks

[25, 26]. Please see the Fig. 1 for a graphical illustration.

Table 1. Results of the thresholding methods on

Bengalese finches. Each section annotated by the

method’s name shows the metrics defined on the top

for each individual on the rows. For ease of read, pay

attention to the Jaccard or f1 columns.

animal id f1 precision recall Jaccard

Thresholding-C

bl26lb16 69.02 96.69 53.66 52.69
gr41rd51 85.40 98.11 75.60 74.52
gy6or6 71.68 99.53 56.00 55.86
or60yw70 81.67 99.15 69.43 69.02

Thresholding-B

bl26lb16 91.67 97.84 86.23 84.62
gr41rd51 95.91 98.89 93.10 92.14
gy6or6 91.75 99.60 85.04 84.75
or60yw70 96.54 98.79 94.40 93.32

Thresholding-A

bl26lb16 97.73 95.66 99.88 95.56
gr41rd51 98.25 96.63 99.93 96.56
gy6or6 99.17 98.46 99.90 98.36
or60yw70 99.04 98.16 99.94 98.10

Dropout2dConv2d LeakyReLU MaxPool2d X 3

Bi-LSTM Dropout1d Linear

Input

Output

Figure 1. The neural network architecture with an

input-output example.

The optimization algorithm was Adam [38] with the

default parameters. We used a learning rate scheduler con-

sisting of a linear warmup for 10 epochs, a constant rate of

1e−3 for 140 epochs, and a cosine decay for 150 epochs

while keeping the minimum learning rate at 1e−6.
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Table 2. Results of the thresholding methods for

the canaries. Thresholding-A can’t be applied here,

please see the section 3.

animal id f1 precision recall jaccard

Thresholding-C

llb3 70.36 98.98 54.58 54.28
llb11 68.07 97.61 52.25 51.59
llb16 77.04 99.32 62.92 62.65

Thresholding-B

llb3 91.56 95.96 87.54 84.43
llb11 85.80 92.79 79.79 75.13
llb16 89.62 95.61 84.35 81.20

3. EXPERIMENTS AND RESULTS

All the results in the following tables are in percentage,

and higher is better. The results of thresholding methods

for the Bengalese finches are shown in Tab. 1, and for ca-

naries in Tab. 2. The thresholding-A is not perfect due

to the additional cleanups by experts during annotation.

Also, it’s not applicable for the canaries since manually

tuned parameters by experts are not available. Cohen et

al. [5] demonstrated that thresholding doesn’t extract all

the syllables for complex songs as seen in canaries. It’s

due to the variation in the amplitude and structure of their

songs. The following sections present our methods.

3.1 Bengalese finches Individual-Specific Model

Five labeled songs were picked randomly for each bird,

and the rest were used for the semi-supervised objective

(without annotations) and testing. The semi-supervised

model was compared to a supervised model trained solely

on the five labeled songs. To reflect a real few-shot

scenario, no validation set was used for early stopping.

However, a small portion of the recordings were used in

preliminary experiments for model design. The models

showed fast convergence while being consistent across the

epochs with negligible variation in performance. All mod-

els were trained for 300 epochs, and the reported metrics

are from the last training epoch, see the Tab. 3.

Table 3. Results of training a separate model for each

Bengalese finch. Both methods are strong, compare

the Jaccard score to thresholding-A in Tab. 1.

animal id f1 precision recall Jaccard

Supervised

bl26lb16 96.96 95.29 98.69 94.09
gr41rd51 97.81 97.43 98.20 95.72
gy6or6 97.87 97.57 98.17 95.83
or60yw70 97.59 97.57 97.62 95.30

Semi-Supervised

bl26lb16 97.86 97.70 98.03 95.81
gr41rd51 98.25 98.59 97.92 96.57
gy6or6 98.36 98.01 98.72 96.78
or60yw70 98.50 98.50 98.49 97.03

Table 4. Results of training a model for all Bengalese

finches simultaneously. The performance improved

compared to individual modeling in Tab. 3.

animal id f1 precision recall Jaccard

Supervised

bl26lb16 98.09 98.16 98.02 96.25
gr41rd51 98.59 98.89 98.29 97.22
gy6or6 98.03 96.94 99.16 96.14
or60yw70 98.27 97.55 99.00 96.60

Semi-Supervised

bl26lb16 98.18 98.00 98.36 96.42
gr41rd51 99.04 98.87 99.21 98.10
gy6or6 98.78 98.75 98.81 97.59
or60yw70 98.96 98.92 99.00 97.94

3.2 Bengalese finches Species-Specific Model

The setup and data are identical to the section 3.1. How-

ever, a unified model was trained for all birds, totaling 20

labeled songs from four birds and their unlabeled songs

for the semi-supervised objective and testing. The results

are in Tab. 4, and a sample output of the model in Fig. 2.
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Figure 2. A sample output of the semi-supervised

species-level model of Bengalese finch. Top ribbon

is Human annotation and the bottom one from model.

Table 5. Results of the canary species-specific

model. Both models show reasonable performance

given low data and complexity of canary song. This

is not achievable by a thresholding method.

animal id f1 precision recall Jaccard

Supervised

llb3 97.00 95.66 98.39 94.18
llb11 97.41 96.50 98.33 94.94
llb16 97.37 96.81 97.94 94.87

Semi-Supervised

llb3 97.11 95.82 98.43 94.38
llb11 97.60 97.18 98.01 95.31
llb16 97.57 97.36 97.79 95.26

3.3 Canaries Species-Specific Model

We limit the canaries to species-specific modeling since

it’s stronger, computationally cheaper, and should be the

method of choice in applications. A set of 29 recordings

were picked randomly while ensuring each syllable type

was present at least once. The other recordings were used

for semi-supervised objective and testing. See the results

in Tab. 5 and Fig. 3

3.4 Supervised vs. Semi-Supervised method

The supervised model performed close to the semi-

supervised while being easier to implement. The Ben-

galese finch with id ”gy6or6” was used to compare the

two methods as training size increases, see the Fig. 4. The

result suggests a trade-off between the computation and

annotation costs.

Figure 3. A sample output of the semi-supervised

species-level model of canary. Top ribbon is Human

annotation and the bottom one from model.

Figure 4. Supervised vs. semi-supervised for a Ben-

galese finch. The duration is more background than

song.

4. CONCLUSION

Many studies in birdsong analysis require accurate seg-

mentation and categorization of the syllables. Current

models for curating birdsong datasets lack consistency

and reusability across laboratories due to heavy reliance

on experts’ subjective decisions and heuristics. However,

mistakes in annotation propagate to the final result, lead-

ing to inconsistencies or non-reproducible findings. We

proposed a data-efficient semi-supervised model to allevi-

ate the segmentation stage problems and labor.

The model showed near-expert performance while us-

ing very few labeled songs. Additionally, it can handle

all individuals within a species in one model without any

change to hyper-parameters. To our knowledge, this is

impossible by the thresholding algorithms. The main dif-

ference is that learning models are pattern-seeking instead

of being sensitive to the magnitude. The semi-supervised

model outperformed its supervised counterpart, which re-
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veals the benefits of leveraging unlabeled data in Bioa-

coustics. However, the supervised model had good per-

formance with reasonable training data. One might be

interested in extending this work to field recordings, but

that requires addressing challenges such as overlapping

sounds and diverse types of noise found outdoors. Provid-

ing such an assessment is beyond the scope of the current

paper, and requires precisely labeled filed recordings.

Finally, the neural networks were not sensitive to the

initial small training sets. However, it is not expected from

any learning method to correctly evaluate a pattern that

was absent during the training. We suggest two solutions

to gain consistent results: (i) provide at least one example

of each vocal pattern in the training set, (ii) segment all

vocalization and clean them at the clustering stage. The

former solution might inject inconsistency, but the latter

makes it possible to think about unsupervised segmenta-

tion and full automation. A potential future direction is

to merge the deep segmentation with a deep clustering

method to provide consistent and effortless annotation on

demand for large datasets.
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