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ABSTRACT

The process of selecting the geometrical dimensions of
the pipes in a pipe organ is referred to as scaling. Wooden
pipes with rectangular cross-section are usually designed
so that their cross-sectional area equals that of the corre-
sponding cylindrical pipe. It often occurs, especially in
case of lower registers, that the wooden pipe rank does
not fit into the available width, and the pipes are neces-
sarily made narrower. In this case, maintaining the cross-
sectional area the same may result in a significant change
of timbre due to the increased amount of wall losses.
This paper proposes and examines a scaling method that
enables designing narrower wooden pipes with avoiding
unwanted changes of the timbre. The approach relies on
keeping the wall losses the same as that of the reference
cylindrical pipe. The theory of the scaling technique is
presented, it is analysed using simplified one-dimensional
as well as 3D numerical models. Experimental pipes de-
signed for this study are measured and modelled, proving
the applicability of the proposed scaling method.
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1. INTRODUCTION

When a new pipe organ is planned, the dimensions of each
pipe is determined in a process called scaling. The or-
gan builder selects a reference scaling method which pre-
scribes a geometrical progression of diameters along the
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notes of the musical scale. Then, deviations from the ref-
erence are chosen for each stop, based on the desired char-
acter of sounds for the registers. Organ builders can also
take the room acoustic properties of the church or hall into
account during scaling.

For wooden flue pipes with rectangular cross sections,
two traditional scaling methods exist. Both methods take
the corresponding cylindrical pipe as a reference, see Fig-
ure 1. The depth D and width W of the rectangular pipe
are chosen such that they either match the diameter 2R of
the reference pipe (W =D=2R), or that the cross sec-
tional area becomes the same as that of the reference pipe
(DW = R2π). In case of the latter method, W is chosen
such that it equals a given fraction of the circumference of
the reference pipe. For diapason pipes, 1/4 is a common
choice, such that W = 2Rπ/4.

Figure 1 depicts the structure and parts of a wooden
flue organ pipe with an open end. Pressurized air enters
the pipe foot through the bore, and forms a jet as it exits
the foot through the thin slit called the flue. The air jet in-
teracts with the upper lip, generating pressure waves that
travel inside the pipe body and get reflected at the open
(or closed) end. The acoustical feedback of the resonator
forces a cross-stream movement of the jet leading to a syn-
chronisation and a periodic excitation of the resonator in
the steady state of sound generation. The frequency of the
pipe is tuned by means of the tuning slot and slide. The
geometry of the mouth region is very important in achiev-
ing the desired perceived quality of the pipe sound. For
wooden pipes, the width of the mouth is equal to the inner
width of the pipe, while the height of the mouth (cut-up)
is adjusted during the voicing process.

In case of wooden pipes of the lower registers, it oc-
curs relatively often that the series of pipes would not
fit into the available space, and it is necessary to make
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Figure 1. Left: Parts of an open wooden flue pipe.
Right: Two traditional and a novel scaling method.

the pipes narrower. This paper examines a scaling ap-
proach that allows for designing narrower wooden pipes
with maintaining the amount of wall losses constant (see
bottom right of Figure 1). The theory of this approach
is introduced in Section 2, where a finite element (FE)
method with wall losses is also discussed. Section 3 in-
troduces the experimental organ pipes made for this study.
The “passive” acoustic behaviour of the pipes is examined
by means of laboratory measurements and FE simulations
in Section 4. The stationary and transient sound analysis
of the experimental pipes are discussed in Section 5. Fi-
nally, Section 6 concludes the paper by a short summary.

2. METHODOLOGY

2.1 Theory

Wall losses in wind musical instruments result from fric-
tion and thermal diffusion taking place in the boundary
layers developing close to the walls. The thickness of the
viscous and thermal boundary layers are denoted by δv
and δt, respectively:

δv =

√
2η

ωρ0
δt =

√
2κ

ωρ0Cp
, (1)

with η, ρ0, κ, and Cp denoting the dynamic viscosity,
equilibrium density, thermal conductivity, and the specific
heat at constant pressure, respectively, and ω being the an-
gular frequency.

The combined effect of the boundary layers is ex-
pressed by the wall absorption coefficient α, which is
found for a cylindrical duct of radius R by an asymptotic
approximation [1] as

α◦ ≈ 1

Rc0

√
ηω

2ρ0

(
1 +

γ − 1√
Pr

)
≈ 3 · 10−5

√
f

R
, (2)

where c0 is the speed of sound in the free field, γ is the
ratio of specific heats, Pr is the Prandtl number, and f
is the frequency. Hereafter the subscript ◦ refers to the
cylindrical geometry. The expression on the right hand
side of (2) resulted from the material parameters of dry at
the ambient temperature of T = 20 ◦C.

At low frequencies, intrinsic and radiation losses are
much smaller in organ pipes than wall losses, thus, the
latter determine the quality factors of the first few longi-
tudinal eigenmodes of the pipes. The total amount of wall
losses in a pipe are proportional to the surface where the
losses occur divided by the volume of the pipe. Hence,
the quality factor Q becomes inversely proportional to the
circumference C and proportional to the cross sectional
area S:

1

2Q
≈ CδL

SL
=

Cδ

S
with δ =

1

2
δv +

γ − 1

2
δt. (3)

As a consequence, the wall loss coefficient of a rect-
angular pipe α⋄ is found from the ratio of the circumfer-
ences and α◦ as:

α⋄

α◦
=

2(D +W )

2πR
=

1√
π

(√
ε+

1√
ε

)
, (4)

where ε = D/W was introduced and the effective radius
R =

√
DW/π was utilized assuming that cross sectional

areas of the pipes are the same.
From (4) it is immediately seen that α⋄/α◦ > 1 and

its minimum value is 2/
√
π ≈ 1.128 for ε = 1. By in-

creasing ε, the ratio increases, meaning that narrowing the
pipe with keeping the cross sectional area the same in-
creases the amount of wall losses and decreases the qual-
ity factor of the most important longitudinal modes.

It follows from (3) that in order to achieve the same
quality factor, C/S must be kept constant. Then, for a
given reference value of ε1 = D1/W1 and a free parame-
ter wn = Wn/W1, εn is attained as

1

εn
=

1 + ε1
ε1

wn − 1, (5)
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resulting in the new depth Dn and width Wn that will give
the same wall loss coefficient as the reference pipe.

2.2 Finite element model

In the sequel the FE method is applied for modelling
wooden flue organ pipes with wall losses. First, the incor-
poration of wall losses into the acoustical FE technique
is discussed, and then the theory presented above is com-
pared to numerical simulations.

Berggren et al. [2] proposed an approach that en-
ables treating the boundary layers as boundary conditions
(BC) in the FE model. For the simulation domain Ω, the
Helmholtz equation is applied, and for the walls Γw the
BC is written as:

∇2p+ k20p = 0 in Ω (6)

−δ′v∇2
T p+ k20δ

′
tp+

∂p

∂n
= 0 on Γw (7)

where δ′v = 1
2 (j−1)δv , δ′t =

1
2 (j−1)(γ−1)δt, with j being

the imaginary unit, and k0 = ω/c0. The operator ∇T

denotes the gradient vector containing only the tangential
components. To make the problem well-posed a natural
BC on ∂Γw is also required:

nT · ∇T p = 0 on ∂Γw, (8)

with nT denoting the normal vector that is aligned in the
tangential direction of Γw.

By substituting (7) into the weak form of (6) and
performing an integration by parts on Γw, the Galerkin
method leads to the following discretized form:

(K+ δ′vKw)p− ω2 (M− δ′tMw)p = −jωAv, (9)

where K and M and the mass and stiffness matrices, Kw

and Mw are stiffness and mass contributions of the bound-
ary layers on Γw from (7). The matrix A results from a
boundary term, and p and v are the coefficient vectors of
the pressure and normal particle velocity fields.

To compare the wall loss coefficients resulting from
the FE model with the theory, a closed cylindrical duct
with a radius of R = 20mm was simulated first. In the
model, the duct is driven by a rigid piston at the input end
and has a perfectly rigid termination on the other end. At
each testing frequency the length of the duct was taken as
L = 1.05λ, with λ = c0/f being the wavelength in the
free field. To avoid the effect of numerical dispersion, the
axisymmetric model was discretized by 1 000 elements
along L and 20 elements along R.
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Figure 2. Frequency dependent effects of wall losses
in a cylindrical tube with R = 20mm.

As the wall losses affect the resulting wave number:

k(ω) = k0 +∆k(ω) = k′(ω)− jα(ω), (10)

the one-dimensional pressure field in the duct is written as

p(x) = p+e−jk0xe−j∆kx + p−e+jk0xe+j∆kx. (11)

Finally, ∆k is attained by a non-linear least squares fit [3]
onto the pressure field in the axis of the tube (0 ≤ x ≤ L),
which results from solving (9) for p. The three complex
valued fitted parameters in (11) are p+, p−, and ∆k.

Figure 2 depicts the comparison of the FE results and
the analytical formula of Zwikker & Kosten [4] for the
cylindrical pipe, showing an excellent agreement of the
models regarding both the phase velocity and the absorp-
tion coefficient α◦. The relative difference between the
analytical formula and the FE simulation is < 0.3% in the
frequency range of interest 0.01 ≤ k0R ≤ 1.84.

Similar simulations were performed on ducts having
rectangular cross sections with different depth to width
ratios D/W using 3D FE models. Figure 3 displays the
resulting wall loss coefficients compared to a cylindrical
duct having the same cross sectional area. Apparently,
at very low frequencies (k0R ≈ 0.01) the FE simulation
predicts slightly greater wall losses than the theory, with
the relative difference being ≈ 1.5%. Nevertheless, these

4449



10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

1 1.5 2 2.5 3 3.5

Depth / width (D/W)

1.1

1.2

1.3

1.4

α
 /
 α

°

Theory

FE, k
0
R = 0.01

FE, k
0
R = 0.10

FE, k
0
R = 1.00

Figure 3. Wall losses of rectangular ducts as a func-
tion of ε = D/W . Theory (4) compared to FE.

frequencies are much lower than the fundamental frequen-
cies of the experimental pipes introduced in the next sec-
tion, which correspond to k0R ≈ 0.1. At higher frequen-
cies a very good match of theory and FE results is found
with relative differences of 0.2–0.3%. The agreement of
the theory and the numerical model is promising for the
FE simulations of complete pipes.

3. EXPERIMENTAL PIPES

Two series of experimental pipes were built by the
company Famiglia Artigiana Fratelli Ruffatti, located in
Padua, Italy. Both series are open pipes with a nominal
tuning to 4′ C, i.e., ≈ 131Hz. The first series of pipes was
scaled, tuned, and voiced by the renowned organ builder
Francesco Ruffatti. The first pipe is scaled by taking the
width of the mouth as 4/16 of the circumference of a ref-
erence cylindrical diapason pipe, and cut-up Hm is taken
as 2/7 of the width. Then, the width is decreased gradu-
ally in the series by taking 4/17, 4/18, 4/19, and 4/20 of the
reference circumference as the width of the pipe, while
the depth is increased such that the cross sectional area re-
mains the same. As the pipes become narrower, the height
of the mouth was increased by the organ builder to keep
the perceived loudness of the pipes roughly the same.

Pipes of the second series were scaled using the scal-
ing rule for equal wall losses (5). As a reference ε1 was
taken as D/W of pipe “4/16” of the first series, and the
parameter wn decreased gradually from w1 = 1.0 to
w5 = 0.8 in steps of ∆w = −0.05. The 2nd series of
pipes was not voiced by the organ builder; however, the
front side of the pipes were made detachable allowing for
changing the cut-up Hm in voicing experiments. When
increasing Hm, small pieces of steel U-profiles could be

Figure 4. Photo of the top view of the 1st (left) and
2nd (right) series of experimental pipes.

Table 1. Dimensions of experimental pipes in mm.

Pipe L W D Hm Ltun Wtun

1s
ts

er
ie

s
4/16 1180 69.8 86.9 18.6 91.3 28.2
4/17 1180 64.6 93.1 21.7 107.2 25.8
4/18 1181 61.2 98.3 20.6 130.4 27.1
4/19 1180 58.1 103.1 23.4 128.5 26.9
4/20 1179 55.3 108.4 25.1 136.5 24.1

2n
d

se
ri

es

1 1183 70.1 87.1 20.0 0.0 30.0
2 1183 64.9 96.6 20.0 50.0 25.8
3 1184 60.9 105.9 22.0 68.0 26.2
4 1185 57.8 117.1 23.0 110.0 26.4
5 1184 55.8 128.8 24.0 148.0 26.4

inserted to fill the gap formed between the front plate and
the cap on the foot. Due to the removable fronts, tuning
slots and slides were made on the back side for the 2nd se-
ries, while they were located on the front for the 1st series.

Figure 4 shows a photo of the two series of pipes be-
side each other, while Table 1 lists their dimensions. The
parameters Ltun and Wtun are the length and width of the
tuning slot. The wall thicknesses varied between 10 and
11mm, the height of the foot was ≈ 72mm, and the di-
ameter of the foot hole was ≈ 22mm for all pipes.

4. ACOUSTICAL ANALYSIS

The resonance properties of the pipes of the first series
were examined by means of transfer function measure-
ments. The air column inside the pipe body was excited
by a loudspeaker located at a distance of ≈ 0.3m from
the open end of the pipe and driven by a logarithmic chirp
signal. A B&K 4165 condenser microphone recorded the
signal near the open end, while a small Sennheiser KE 4-
211-2 electret probe microphone was inserted into a hole
drilled into the back wall of the pipes at 10mm distance
from the languid. The excitation was provided and both
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microphone signals processed by a HP 35670A analyser.
FE simulations were also carried out, modelling the

arrangement of transfer function measurements. 3D
meshes consisting of linear tetrahedron elements were
created using the parametric mesh generation software
Gmsh [5]. The typical edge length in the mesh is 10mm
inside the pipe, and it is refined to 3 and 5mm in the
mouth and at the open end and tuning slot of the pipes.
Free field conditions were emulated using Astley – Leis
infinite elements [6], which are projected from a surface
of a cylinder that encompasses the whole pipe and con-
tains some of the external air. Exploiting plane symmetry
along the width of the pipe, the resulting models contained
≈150 k elements and had ≈50 k degrees of freedom. The
loudspeaker was modelled as a simple point source, and
a virtual microphone location was taken in the same posi-
tion as the probe microphone inside the pipe.

The quality factors and the natural frequencies were
found by fitting a resonance curve onto the narrow neigh-
bourhood of the peaks of the transfer functions H(f):

|H(f)|i ≈
∣∣∣∣ Aif

2
i /Qi

f2
i + jfif/Qi − f2

∣∣∣∣ , (12)

with i = 1, 2, . . . 10 denoting the ith peak and Ai, Qi,
and fi being the corresponding magnitude, quality factor,
and eigenfrequency, respectively. The cutoff frequency,
i.e., the frequency of the first depth-wise transverse mode,
fcut ≈ c0/(2D) is also found from the transfer functions.

Table 2 displays the measured and simulated reso-
nance properties of the fundamental modes and cutoff of
the first pipe series. While the eigenfrequencies show an
excellent agreement, the FE model gives 18–29% higher
Q values than the experiments. A possible explanation
of this deviation is the presence of further sources of loss
in the measurement, which are not accounted for in the
numerical model, such as the roughness of the wall sur-
faces and the vibration of the walls. The approximation
of (3) gives Q1 values from 69.2 (pipe 4/16) to 65.5 (4/20).
All three methods gave a decreasing Q1 value as D/W
increases, with the measurement showing the largest de-
crease in Q1. The resulting cutoff frequencies agree well
with the theoretical values.

The frequencies of the first 10 peaks were also com-
pared, and an excellent agreement was found with rel-
ative differences of 1.2% maximum and < 0.5% aver-
age. Thus, the FE method with wall losses and infinite
elements proves to be a suitable tool for predicting the
resonance properties of flue organ pipes. The FE simula-
tion also highlights the importance of wall losses for the

Table 2. Measured ans simulated resonance proper-
ties of the first series of pipes.

Pipe
Measurement Simulation

f1 Q1 fcut f1 Q1 fcut
[Hz] – [Hz] [Hz] – [Hz]

4/16 130.9 66.3 1987 130.8 78.7 1990
4/17 131.0 67.4 1848 132.0 78.3 1844
4/18 131.7 65.5 1740 132.2 76.8 1760
4/19 131.9 63.0 1664 132.6 76.9 1678
4/20 131.7 59.4 1582 132.2 76.1 1596

Figure 5. Pressure waveforms of pipe 4/18 at the first
four eigenfrequencies and at the cutoff.

first few longitudinal modes of the resonator. A simulation
without wall loss effects results in Q1 values that are more
than 3× greater than that with wall losses. At higher fre-
quencies, radiation losses become higher and the discrep-
ancy between the two models diminishes: above 1 kHz,
the difference in Q values is only 10–12%.

Figure 5 displays the first few longitudinal mode
shapes of pipe 4/18 and the effect of the cutoff. As typical
to organ pipes with an open end, the pressure maxima of
longitudinal modes are shifted slightly towards the mouth
from the center of the pipe, as a consequence of the radi-
ation impedances being different at the two openings [7].
The asymmetric radiation pattern due to the presence of
the tuning slot is also visible near the open end of the pipe.

The harmonicity of the eigenfrequencies of the res-
onator is known to have a significant effect on the steady
state sound spectrum of flue organ pipes [8,9]. Therefore,
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Figure 6. Stretching of the first ten eigenfrequencies
of the experimental pipes.

the normalized stretching factors Strn = fn/(nf1), with
fn denoting the nth eigenfrequency, were extracted from
the FE simulations, and shown in Figure 6. For both series
of pipes, the stretching factors exhibit an increasing trend
with the frequency. Compared to the 1st series, stretching
factors of the first few modes gradually increase for the 2nd

series, which is a result of increasing the cross sectional
area. For higher tuning slot lengths (Ltun > 100mm), the
stretching factors of higher modes are slightly reduced.

5. SOUND ANALYSIS

The sounds of the experimental pipes were measured and
recorded in the anechoic chamber of the Fraunhofer Insti-
tute of Building Physics. A model wind system consisting
of a blower, regulator, wind ducts, and wind chest was as-
sembled. The pressure in the windchest was set to 700Pa,
which is the voicing wind pressure for the 1st series of
pipes. The pipes were sounded by opening a controlled
valve in the windchest automatically by a timer. Micro-
phones were located near the open end and the mouth of
the pipes, and after amplification their signals were sam-
pled by an 16-bit RME Hammerfall DSP sound card con-
nected to a computer and running at a sampling frequency
of 44.1 kHz. In each file, three 10-seconds-long sounds
were recorded with 5 s pause between them. First, the
steady states were analysed, and the fundamental frequen-
cies f1 were determined. Then, the recordings were re-
sampled at a rate of f ′

s = 64f1 and the steady state spectra
and attack transients were evaluated.

Figure 7 shows the steady state spectra and attack

transients of the first pipe series, measured near the mouth
of the pipes. The fundamental frequency was 131Hz in all
cases. The pipes only have a few strong partials: beside
the fundamental the octave and the third partial (fifth) are
relatively strong, other partials are significantly weaker.
The attack transients of pipes 4/17, 4/18, and 4/19 are very
similar to each other. In each case, the octave has a larger
magnitude in the initial stage, and steady state magnitudes
of the first three partials are reached after ≈ 0.4–0.5 s, i.e.,
50–65 periods. For pipe 4/16 a larger overshoot of the oc-
tave is observed. The attack of pipe 4/20 became very slow,
≈ 0.8 s was needed to reach the steady state magnitude.
Here, the fundamental develops first, and the magnitudes
of all three partials fluctuate during the attack, which is
most probably a consequence of the higher cut-up.

The opinion of the organ builder on the first series of
pipes was that the sound colour gradually gets “darker”
(more fundamental, less upper harmonics), which he ex-
pected due to decreasing the width and increasing the
height of the mouth. The organ builder also remarked that
with increasing the depth, the acoustical length of the pipe
seems to increase (notice that Ltun had to be increased
gradually to achieve the same pitch, see Table 1).

As the 2nd series of pipes was not voiced by the or-
gan builder, the following approach was pursued. First,
different mouth heights were set up using the detachable
front sides, and the resulting attack transients were eval-
uated. Similar attacks were found for mouth heights of
20, 20, 22, 23, and 24mm for the five pipes, respectively.
Then, the pipes were tuned to the same frequency using
the tuning slides. Equal frequencies of 126Hz could be
configured with the tuning slot lengths 0, 50, 68, 110 and
148mm, respectively. After tuning the pipes, new sound
recordings were made for evaluation.

Figure 8 depicts the resulting stationary spectra and
attack transients. The close similiarity of the levels of
the first three partials in the steady state is immediately
observed. The gradually increasing stretching factors are
also visible in the baselines of the stationary spectra: as
the depth of the pipe is increased, the 3rd and 4th eigen-
frequencies shift towards higher frequencies from the har-
monic partials. A similar, but less pronounced effect is
also visible in Figure 7. The attack transients are similar
to those of the 1st series: the octave becomes the strongest
partial in the initial stage. It has to be remarked that the
voicing by the organ builder resulted in quicker attacks
and less fluctuation of the levels of the partials.

Table 3 summarizes the levels of the first three par-
tials in the steady state sound of each pipe. The voicing
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Figure 7. Stationary spectra and attack transients at the mouth for the first pipe series, f1 = 131Hz.

by the professional organ builder resulted in very similar
levels of the fundamental for the first pipe series, while
in the second series the differences are somewhat higher.
At the same time, the relative level of the octave exhibits
larger variations in the first series. In both series, the last
pipe (#5) can be considered an outlier, as the 3rd partial be-
came remarkably weaker for these pipes. Concerning the
similarity of the first four pipes, the new scaling method
can be regarded successful.

6. CONCLUSIONS

This paper examined a possible improvement to the scal-
ing of wooden flue organ pipes with rectangular cross sec-
tions. The general idea was to keep the amount of wall
losses constant opposed to keeping the cross sectional area
constant when reducing the width of the pipe. The theory
of wall losses in a rectangular pipe was reviewed and a
new scaling rule (5) was established. Two series of exper-
imental pipes using the traditional and new scaling meth-
ods were manufactured and analysed by means of labo-
ratory experiments and numerical models. It was found
that it is possible to maintain the similarity of the steady
state timbre of progressively narrower pipes by applying
the proposed scaling method.

The importance of voicing has to be emphasised here.
After an experienced organ builder and voicer, Konrad

Table 3. Absolute level of the fundamental (L1) and
relative levels of the octave and third partials (∆L2,
∆L3) in the steady state. Values are in dBSPL.

Pipe 1st series 2nd series

L1 ∆L2 ∆L3 L1 ∆L2 ∆L3

#1 76.2 −4.0 −16.5 76.1 −12.0 −17.9
#2 75.5 −10.8 −17.4 73.9 −11.5 −15.5
#3 76.1 −7.2 −20.7 75.4 −10.6 −17.8
#4 76.6 −6.3 −18.9 75.2 −13.7 −20.0
#5 76.2 −11.6 −29.5 70.8 −7.2 −31.1

Mühleisen listened to the sounds of the 2nd series of pipes,
he immediately objected the slowness of the attacks. He
recommended various further voicing adjustments, such
as attaching beards to some of the pipes. Nevertheless, he
reconsidered his opinion on designing narrower wooden
flue pipes with similar timbres from “impossible” to “pos-
sible, with further modifications”.

Some remarks are made on the application of the pro-
posed method. As an example, the total width of a 8′ rank
of diapason pipes with 3 octaves (37 pipes from 8′ C2 to
1′ C5) can be reduced from ≈2.95 to ≈2.51m, with tak-
ing w = 80%. The same method may be applied for de-
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Figure 8. Stationary spectra and attack transients at the mouth for the second pipe series, f1 = 126Hz.

signing stopped wooden flue pipe ranks with rectangular
cross sections. Finally, the FE approach can be utilized
for investigating the wall losses of different pipe forms.
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