
10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

A SENSITIVITY ANALYSIS ON THE EFFECT OF HYPERPARAMETERS
IN DEEP NEURAL OPERATORS APPLIED TO SOUND PROPAGATION

Nikolas Borrel-Jensen1∗ Allan P. Engsig-Karup2

Cheol-Ho Jeong1

1 Technical University of Denmark, Dep. of Electrical and Photonics Engineering, DK
2 Technical University of Denmark, Dep. of Applied Mathematics and Computer Science, DK

ABSTRACT

Deep neural operators have seen much attention in the
scientific machine learning community over the last cou-
ple of years due to their capability of efficiently learn-
ing the nonlinear operators mapping from input function
spaces to output function spaces showing good generaliza-
tion properties. This work will show how to set up a per-
formant DeepONet architecture in acoustics for predict-
ing 2-D sound fields with parameterized moving sources
for real-time applications. A sensitivity analysis is car-
ried out with a focus on the choice of network archi-
tectures, activation functions, Fourier feature expansions,
and data fidelity to gain insight into how to tune these
models. Specifically, a default feed-forward neural net-
work (FNN), a modified FNN, and a convolutional neural
network will be compared. This work will de-mystify the
DeepONet and provide helpful knowledge from an acous-
tical point of view.

Keywords: neural operators, sensitivity analysis, virtual
acoustics, DeepONet

1. INTRODUCTION

Deep learning has seen rapid development over the last
20 years, with a many-fold of applications such as image
classification and computer vision, speech recognition,
language translation, autonomous driving, bioinformatics,

*Corresponding author: nibor@dtu.dk.
Copyright: ©2023 Nikolas Borrel-Jensen et al. This is an open-
access article distributed under the terms of the Creative Com-
mons Attribution 3.0 Unported License, which permits unre-
stricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

chatbots, and more. More recently, scientific machine-
learning (SciML) methods have been proposed in the con-
text of deep learning. Physics-informed neural networks
were introduced in 2017 [1] inspired by [2] and have al-
ready seen many applications [3, 4]. Typical for most of
these techniques is that they are based on the assump-
tion of function approximations of neural networks [5]. In
2019, the DeepONet was introduced [6], extending a the-
orem on the universal operator approximation for a single-
layer neural network [7] to hold for deep neural networks.
Moreover, the original architecture was improved to ex-
hibit small generalization errors. Unlike function regres-
sion, operator regression aims to learn the mapping from
one function space (inputs) to another function space (out-
put), where the learned operator can be evaluated at arbi-
trary (continuous) locations. Another work on operator
learning is the Fourier Neural Operator (FNO) introduced
in 2021 [8], based on parameterizing an integral kernel
directly in the Fourier space.

In this work, we will apply the DeepONet to ap-
proximate the wave equation operator for frequency-
independent boundary conditions and parameterized
source positions similar to [4] in 2-D for virtual acous-
tics applications such as computer games, AR/VR, and
metaverses. The impulse response (IR) has traditionally
been calculated using numerical methods. However, when
handling moving sources, this approach gets challenging
both from a computational and storage point of view since
the IRs have to be re-calculated offline for each source
position and the IRs stored for each source/receiver pair.
This gets intractable when approaching the full frequency
range.

It is vital to apply various techniques and fine-tune
the hyperparameters for the DeepONet to exhibit fast

DOI: 10.61782/fa.2023.0930

3169

10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

convergence with low generalization errors. This work
aims to perform a sensitivity w.r.t. the network architec-
ture, data resolution, batch size, activation functions, and
Fourier feature expansion techniques to better understand
the workings of the DeepONet when applied in an acous-
tical context.

2. METHODS

2.1 Deep operator network (DeepONet)

DeepONet [6] is a general deep learning framework for
approximating continuous operators contrary to continu-
ous functions. The underlying theory stems from the uni-
versal operator approximation theorem [7], stating that a
neural network (NN) with a single hidden layer of infinite
width can approximate any nonlinear continuous func-
tional or operator. Let G be the operator we want to
learn using NNs, defined as G : u 7→ G(u), where u is
the input function to G and G(u) is the output function.
For any point, y in the domain of G(u), G(u)(y) ∈ R
is producing a real number. Translating this into a NN
setting, the network takes two inputs, u and y, and out-
puts G(u)(y). The input function is discretized by eval-
uating u at a finite number of points {xi} called ‘sen-
sors.’ The approximation theorem by Chen and Chen
considers shallow networks and only guarantees small ap-
proximation errors but does not consider generalization
and optimization errors. In [6], the authors extended the
original theorem by proposing deep neural networks in-
stead of shallow networks and proved that the network
is also universal approximators for operators. The pro-
posed deep operator network, DeepONet, achieves small
total errors, including approximation, optimization, and
generalization errors. The DeepONet architecture con-
sists of two subnetworks, the ‘branch net’ for the input
functions and the ‘trunk net’ for the locations to evalu-
ate the output function G(u). The trunk network takes y
as input and outputs [T1, T2, . . . , Tp] ∈ Rp; the branch
network takes [u(x1), u(x2), . . . , u(xm)]T at fixed sen-
sors {x1, x2, . . . , xm} and outputs a scalar Bk ∈ R for
k = 1, 2, . . . , p. By merging the trunk and branch in terms
of their inner product, we get

G(u)(y) ≈
p∑

k=1

Bk (u(x1), u(x2), . . . , u(xm))︸ ︷︷ ︸
branch

Tk(y)︸ ︷︷ ︸
trunk

+b0,

(1)
where b0 is a trainable bias.

2.2 Network architectures

The DeepONet framework allows many network architec-
tures, such as feed-forward neural networks (FNN), re-
current neural networks (RNN), convolutional neural net-
works (CNN), graph neural networks (GNN), and convo-
lutional graph neural networks (CGNN). Since the inputs
to the trunk net are the (continuous) locations on which the
operator’s output is evaluated, the dimensionality is typi-
cally low. In contrast, the input to the branch net is a func-
tion sampled at m sensor locations and is typically high-
dimensional. A common choice for the trunk network is
to use an FNN, whereas FNNs and CNNs have been the
most common architectures for the branch net. The lat-
ter choice is because of the high-dimensional nature of
the input functions, making the CNNs particularly useful
in many applications due to their ability to map higher-
dimensional spaces to lower-dimensional spaces by ex-
tracting the essential features.

In this work, we compare the performance between
using a CNN and an FNN network for the branch net of the
DeepONet, while keeping the trunk net FNN architecture
fixed.

2.2.1 Feed-Forward Neural Network

An FNN consists of an input layer x, n hidden layers, and
an output layer and maps an input x to an output y as

y = (f0 ◦ f1 ◦ . . . ◦ fn)(x), (2a)

fi(x) = σi(W
ix+ bi), (2b)

where σi(x) is a non-linear activation function, except for
the last layer, where we are applying the identity map-
ping σn(x) = x. The weights Wi and biases bi are the
parameters to learn. A multilayer perceptron (MLP) is a
special case of an FNN, where every layer is fully con-
nected, and the number of nodes in each layer is the same.
In this work, we have used the gradient descent optimizer
ADAM.

A modification to the MLP (mod-MLP) was proposed
in [9] and has been shown to outperform the conventional
FNNs also in conjunction with DeepONet [10]. The key
extension is the introduction of two encoder networks en-
coding the input variables to a higher-dimensional feature
space. The networks consisting of a single layer are shared
between all layers, and a pointwise multiplication opera-
tion is performed to update the hidden layers. Let the two
transformer networks be denoted u(x) and v(x) and de-

3170

10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

fined as a simple perceptron

u(x) = σ(Wux+ bu), (3a)
v(x) = σ(Wvx+ bv), (3b)

then the mod-MLP is defined as
y = ((1− f0)⊙ u+ f0 ⊙ v) ◦

((1− f1)⊙ u+ f1 ⊙ v) ◦
...

((1− fn)⊙ u+ fn ⊙ v)(x),

(4)

where ⊙ denotes elementwise multiplication, and W{u,v}
and b{u,v} are the weights and biases for the two trans-
former networks.

2.2.2 Convolutional Neural Network

Convolutional neural networks (CNN) are special net-
works for processing data with a grid-like topology [11]
and use convolution instead of matrix multiplication in
one or more layers. In traditional MLPs, each output unit
interacts with each input unit through weight parameters
describing the interaction. In contrast, CNNs typically
have sparse interactions by applying a convolution ker-
nel (much) smaller than the input dimension. Moreover,
the convolutional kernel is used for every input position,
meaning the parameters are shared. Aside from reducing
the storage requirement, it also causes the layer to have
equivalence to translation.

Although the networks in our work are not partic-
ularly deep, we will use the ResNet architecture [12].
Several ResNet blocks assemble the ResNet. A ResNet
block consists of two stacked CNNs with skip connec-
tions and batch normalization; one or more ResNet blocks
comprise a group (all with the same output shape), and
one or more groups connect the final ResNet. Down-
sampling takes place in the first block of each group
by increasing the strides, and the output channel dimen-
sion is increased, forcing the CNN to capture essential
features in separate channels. We will use the notation
ResNet-{gr1,gr2,gr3,...}, where the element counts inside
the square brackets denote the number of groups, and
the values denote the number of blocks inside the group
indexed by its position. The hidden channel layers are
denoted {ch1,ch2,ch3,ch4,...}, where each element index
corresponds to the ResNet group with the same index.
E.g., when we refer to a ResNet-{2,2,2,2} with hidden
channel layers {8,16,32,64}, it denotes a ResNet having 4
groups of 2 blocks each with 8, 16, 32, and 64 channels
for each of the groups, respectively.

2.3 Activation functions

We will compare the convergence using the Rectified Lin-
ear Unit (relu) x̂ 7→ x̂+, the hyperbolic tangent (tanh)
x̂ 7→ (ex̂ − e−̂x)/(ex̂ + e−̂x) and sinusoidal (sine)
x̂ 7→ sin(x). The latter is a less common choice but has
shown superior convergence for wave propagation prob-
lems [4]. Weight initialization is a significant step before
training the model and depends on the activation func-
tion used. Glorot initialization [13] is used for relu and
tanh, whereas the initialization advised in [14] is used
for the sine activations. Data normalization is done in
the spatial dimensions ([−1, 1] for sine and tanh and
[0, 1] for relu), where the temporal dimension is normal-
ized with the spatial normalization factor to ensure equal
resolutions in all dimensions.

2.4 Loss functions

The mean-squared error (MSE) will be used in all experi-
ments and is the default loss for function regression under
the inference framework of maximum likelihood when the
target variable is assumed Gaussian

MSE = ||ŷ − y||2. (5)

The MSE will punish large values more and is a good
choice when outliers are less pronounced, which is sat-
isfied for our synthetic training data.

2.5 Data resolution

Deep learning methods typically require large data sets
for proper training, which also applies when training the
DeepONet. Since the training data for our simulations are
created synthetically from high-fidelity spectral-element
method (SEM) simulations [15], we can, in principle,
create any training data sample set utilizing a simulator.
However, it is crucial to find a lower bound since gen-
erating data quickly gets intractable when enlarging the
domain and/or simulating a broader frequency range – es-
pecially when going higher dimensions due to the curse
of dimensionality. More extensive training data sets also
impact the training time and hardware requirement. Also,
training a deep neural network on an unnecessary fine-
grained data set is not always advantageous, as we will
see.

We can estimate a theoretical lower bound of the
sampling rate of the discretized wave-propagation data
from the Nyquist Theorem, stating that a given band-
limited continuous-time signal can be perfectly recon-
structed from its discrete-time signal by ensuring that the

3171

10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

continuous signal is sampled using at least two points per
wavelength. The number of spatial points for one dimen-
sion is calculated as

Nsamples =

⌈
L

c/(fmax × ppw)

⌉
, (6)

where ppw is the number of points per wavelength, and
L is the dimension length. Though the sufficient Nyquist
sampling rate can be used in theory, the sampling rate for
the DeepONet to generalize well and the optimizer to find
meaningful optima might require oversampling. The data
and the corresponding resolutions for the DeepONet can
be divided into several parts with eventually different res-
olution requirements.

Firstly, we consider the resolution of the sample func-
tions representing the initial conditions used as input to
the branch net. Remember that the sensors (the sampling
points for each sample function) must be located at equal
locations across all the sample functions. Therefore, we
cannot exploit any sensor location distribution favoring
important samples (e.g., non-zero Gaussian sensors) be-
cause the source should be allowed to move freely inside
the domain, hence a uniform sensor distribution is the best
option. We will investigate the sensitivity from the total
number of sensors m in (1) calculated using (6).

Secondly, the spatial/temporal coordinate inputs to
the trunk net are considered. Contrary to the sample func-
tions, there are no restrictions on choosing the coordi-
nate distributions for different samples, which enables us
to learn the continuous operators of the solution. Vari-
ous sampling techniques have been explored chiefly for
physics-informed neural networks [16]. However, when a
training data set with a given distribution has to be manip-
ulated, weighting and re-distributing important points to
where the physics is most important (e.g., when the gra-
dient is relatively large or when the field is non-zero) be-
comes more involved and could require substantial com-
putational efforts for realistic time-dependent problems in
complex domains. In this work, we will keep the data dis-
tribution determined by the Gauss-Lobotto nodes from the
fourth-order Lagrange polynomials on a non-uniform grid
used in our SEM solver [15] and instead randomly sample
data points corresponding to different grid resolutions for
building up the training and validation data sets.

Thirdly, we will investigate the impact of the relative
resolution between the temporal and spatial dimensions.
From numerical theory, the relation between the tempo-
ral resolution ∆t and the spatial resolution ∆x is given
by ∆t = λ∆x

c ensuring that the distance the wave has

traveled after one time step ∆t × c is no longer than the
spatial resolution ∆x required to resolve the wave prop-
agation. In numerical theory, 0 < λ ≤ 1 is the so-
called Courant-Friedrichs-Lewy stability condition (CFL)
that dictates numerical stability for explicit time-stepping
schemes and should be set such that the chosen method is
numerically stable. There is no such restriction in deep
neural networks as training these relies on global opti-
mization across the parameter domain, and the CFL can be
set to the maximum value. In fact, the temporal and spa-
tial resolutions can be set independently as long as the fre-
quencies are well resolved according to the Nyquist The-
orem. Hence, the temporal and spatial resolutions can be
chosen freely as

∆x =
c

fmax × ppwx

(7a)

∆t =
1

fmax × ppwt

, (7b)

with ppw ≥ 2. For the gradient descent to find meaningful
optima, the speed of sound c = 1 m/s is used to ensure
equal resolutions for all dimensions.

Lastly, the initial source sample density can be de-
termined using (6). The Nyquist Theorem would tell us
the minimum distance between source positions to recon-
struct the signal as the source moves freely. However, a
finer resolution might be needed for the network not to
overfit, as we will investigate in the ‘Experiments’ sec-
tion.

2.6 Fourier feature expansions

It is well-known that deep neural networks first learn
the lower frequency modes of the data and suffer from
learning the higher frequency modes. This phenomenon
is known as spectral bias [17, 18]. This problem can, to
some extent, be overcome by passing the temporal and
spatial coordinates through a Fourier feature mapping
that enables a deep FNN to learn the high-frequency
modes of the data. In this work, we will experiment with
the ‘Positional encoding mapping’ and the ‘Gaussian
mapping’ from [19]. A third ‘ES mapping’ has been
constructed from an analytical solution. In the following,
m is the number of feature expansion terms, and d is the
dimension of the input data:

Positional encoding mapping:

γ(x) = [. . . , cos (2πfjx) , sin (2πfjx) , . . .]
T
,

for j = 0, . . . ,m− 1.
(8)

3172

10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

The frequencies fj can be log-linear spaced along each
dimension or arbitrarily relative to the fundamental
frequency f0 ∈ R+.

Gaussian mapping:

γ(x) = [cos(2πBx), sin(2πBx)]
T , (9)

where each entry in B ∈ Rm×d is sampled from N (0, f2
0)

and f0 ∈ R+ is a fundamental frequency empirically
chosen.

ES mapping:

γ(x, y, t) =

[
. . . , cos(Ωt) cos

(
πnj

Lx
x

)
cos

(
πnj

Ly
y

)
×

cos

(
πnj

Ly
y

)
, . . .

]T
, for j = 0, . . . ,m− 1,

(10)

where ni ∈ Z are the wave modes empirically chosen
and Ω2 = c2π2[(dx/Lx)

2 + (dy/Ly)
2 + (dz/Lz)

2]. The
equation is an exact solution to the 3-D wave equation in
a rectangular domain of size Lx ×Ly ×Lz with perfectly
reflecting boundaries. Sine terms can also be included in
the expansion.

3. EXPERIMENTS

We will perform a sensitivity analysis on the convergence
and accuracy by varying the DeepONet setup. Evaluat-
ing all permutations of all choices will be too exhaustive.
Instead, we will determine a base model setup and investi-
gate the sensitivity of various choices covering the impact
of 1) activation functions, 2) Fourier feature expansions,
3) mod-MLP networks, 4) batch size, 5) the number of
layers and neurons, 6) data resolution, and 7) using a CNN
compared to mod-MLP for the branch net.

The base model uses the default MLP with 4 layers of
width 1024 for both the branch and trunk net. The ADAM
optimizer with learning rate 1e-3 and exponential decay is
used together with the MSE loss. The batch size is 64 for
the branch net and 100 for the trunk net with 2 ppw for
the branch net input functions (initial condition), 2 ppw
for the trunk net temporal dimension, 6 ppw for the trunk
net spatial dimensions, and the source position density is
sampled using 6 ppw.

To evaluate the learned model’s generalization prop-
erties, we ensure that the grid points are (mostly) non-
overlapping in the training and validation data sets. The

training and validation data have been generated using our
SEM solver. The training data is generated using 6 ppw
for the spatial resolution and 6 ppw for the source density
corresponding to 1363 source positions. The validation
data is generated using a spatial resolution of 5 ppw with
5 and 33 source positions.

3.1 Activation function

As a first investigation, we will compare the performance
using the tanh, the relu, and the sine activation func-
tions for the default MLP architecture with and without
Fourier feature expansion. Applying the Fourier feature
expansion when the sine activation functions are used
would be redundant and also show degraded performance
(not shown). The L2 training loss is depicted in Fig-
ure 1a (the validation loss is considered in later experi-
ments). We notice that relu and tanh activation func-
tions are not performing well without Fourier feature ex-
pansions. Applying the Fourier feature expansions im-
proves the learning significantly, with the best results ob-
tained for the relu activation function with Gaussian ex-
pansions. However, using the sine activation function
outperforms the other choices by a large margin.

In Figure 1b, the same experiments are performed but
for the mod-MLP network. We see dramatic improve-
ments for all activations, especially for the sine activa-
tion choice showing almost an order of magnitude lower
L2 errors. We notice a slight improvement for the sine
activation when combining the mod-MLP with the posi-
tional encodings. It is also interesting to note that the
tanh activation performs well when positional encod-
ings are applied using the mod-MLP architecture. In the
following experiments, we will use the sine activation
function with positional encodings.

3.2 Batch size

Here, we will investigate the impact of the batch size on
the network optimizer to find good optima. The valida-
tion data was generated for 5 source positions. In Table
1, the L2 errors are shown when varying the batch sizes
of the branch net function samples from 16 to 96 and the
spatial/temporal coordinates for the outputs from 100 to
800. We note that the batch size for the branch net should
have size 64 or 96, with corresponding batch sizes of 200
or more for the trunk net. The batch size impacts the com-
putational effort, and a good compromise could be to use
a batch size of 64/200 for the branch and trunk net, re-

3173

10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

(a) Default MLP architecture. (b) Modified MLP architecture.

Figure 1: L2 validation loss for combinations of activation functions and Fourier feature expansion types. The
mod-MLP with sine activations dramatically outperforms the other combinations.

Table 1: Batch size experiments using sine activa-
tion functions. The L2 training/validation errors are
given for each batch size combination, where the to-
tal batch size is a multiple of the branch net (BN)
sample size and the temporal/spatial batch size for
the trunk net (TN). The region with the lowest L2 er-
rors is highlighted.

Batch sizes branch/trunk net

TN
BN Batch size

16 32 64 96

B
at

ch
si

ze

1e-6× 1e-6× 1e-6× 1e-6×
100 7.1/7.2 3.9/5.2 3.0/3.6 2.5/3.4
200 3.9/5.1 2.7/3.3 2.2/2.9 2.4/2.6
400 3.1/4.3 2.0/3.1 2.0/2.9 2.1/2.9
800 2.3/3.7 1.9/3.1 1.9/2.8 2.0/2.9

spectively, which we have chosen in the following experi-
ments.

3.3 Number layers and neurons

Table 2 shows the L2 errors when varying the network
depth from 3 to 5 and the network width from 512 to
2048. We observe that wider networks are more critical
for achieving good results than deeper ones. Using sine
activation function can be seen as a Fourier series expan-
sion [20], which could be the reason for the better perfor-
mance using wider networks. Applying wider networks

Table 2: L2 errors for varying the number of layers
(L) and neurons (N) using the sine activation func-
tion.

Layers/neurons architectures

L
N

512 1024 2048

2
t 1.9e-5 2.8e-6 1.6e-6
v 1.9e-5 4.4e-6 3.2e-6

3
t 6.8e-6 2.0e-6 1.5e-6
v 7.6e-6 3.0e-6 3.0e-6

4
t 4.6e-6 2.0e-6 1.8e-6
v 5.4e-6 2.9e-6 2.4e-6

5
t 4.2e-6 2.0e-6 1.6e-6
v 4.8e-6 2.9e-6 2.4e-6

is more computationally expensive; therefore, choosing a
compromise with more layers with fewer neurons can be
necessary. We will use the wider layers with 2048 neurons
and 2 layers, although slightly better results are obtained
with 4 layers.

3.4 Data resolution

The validation data for the following experiments includes
33 source positions instead of the five source position for
the previous two experiments to get a more truthful picture
of generalization when varying the data resolutions. In
Subtable 3a, results are shown for combinations of func-
tion resolutions for the branch net of 2 and 4 ppw with
spatial data resolutions for the trunk net of 2, 4, and 6 ppw

3174

10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

Table 3: Data resolution for a 2/2048 layers/neurons
MLP for the branch and trunk net and batch size
64/200.

Relative resolution branch/trunk net

BN
TN PPW

2 4 6

PP
W 2 1.5e-6/1.1e-4 1.9/6.1e-6 1.9/5.5e-6

4 1.6e-6/6.3e-5 1.9/6.0e-6 1.7/5.1e-6
(a) Data resolution combinations for the branch net (BN)
and trunk net (TN).

Relative resolution src density/space/time
PPW

∆xsrcpos ∆x ∆t train val

2 6 2 1.5e-6 1.7e-5
3 6 2 1.7e-6 7.5e-6
4 6 2 1.7e-6 6.1e-6
5 6 2 1.7e-6 5.0e-6
6 6 2 1.8e-6 5.3e-6
6 6 4 2.0e-6 4.8e-6

(b) Impact from the source density on the generalization
properties.

while keeping the temporal resolution fixed at 2 ppw. We
notice severe overfitting when only 2 ppw are used for
the spatial resolution, with 6 ppw giving the best results.
No significant impact is observed when varying the input
function resolution of the branch net. In Subtable 3b, the
influence from the sampling density of the source posi-
tions ∆xsrcpos is shown, and we notice the least overfitting
when 5 or 6 ppw are used. We also note that using 4 ppw
for the temporal resolution is not increasing the accuracy
by much. This is true since we are overfitting to the uni-
form temporal steps when only using 2 ppw, which is not
a problem since temporal interpolation is not of practical
interest.

3.5 Convolutional neural network for the branch net

Finally, we will compare two ResNet architectures, the
ResNet-{3,3,3,3} with {16,32,64,128} hidden channels
for input functions of size 18 × 18 sampled with 2
ppw and the ResNet-{3,3,3,3,3} with hidden channels
{16,32,64,128,256} for input functions of size 35 × 35
sampled with 4 ppw. The standard ReLU activation func-
tion is used for the CNN architecture. A single linear out-
put MLP layer is used with sine activation functions.
The convergence of the loss can be seen in Figure 2 plot-

Figure 2: Validation loss for ResNet-{3,3,3} and
ResNet-{3,3,3,3} for branch input function resolu-
tions of 2 and 4 ppw.

ted together with the mod-MLP for comparison and shows
similar performance for all ResNet architectures on par
with the mod-MLP architecture reference.

4. CONCLUSION

We have systematically studied the DeepONet sensitivity
for wave propagation problems, focusing on network ar-
chitectures, data fidelity, and operator learning parame-
ters. The most prominent choice for successfully training
the model is to use the mod-MLP architecture in combina-
tion with sine activation functions. Moreover, the spatial
data resolution greatly impacts the accuracy of the trained
model, where 4-6 ppw for the spatial and 5-6 ppw for the
source density resolutions are required for the network to
generalize well for unseen source and receiver positions.

5. ACKNOWLEDGMENTS

Thanks to DTU Computing Center GPULAB for access
to GPU clusters and especially to Sebastian Borchert for
his assistance. Also, thanks to Finnur Pind for access to an
SEM code for data generation. Thanks to George Em Kar-
niadakis for an inspiring stay with the CRUNCH group.

6. REFERENCES

[1] M. Raissi, P. Perdikaris, and G. E. Karniadakis,
“Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse prob-
lems involving nonlinear partial differential equa-

3175

10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

tions,” Journal of Computational Physics, vol. 378,
pp. 686–707, 2019.

[2] I. Lagaris, A. Likas, and D. Fotiadis, “Artificial neural
networks for solving ordinary and partial differential
equations,” IEEE Transactions on Neural Networks,
vol. 9, no. 5, pp. 987–1000, 1998.

[3] S. Cai, Z. Mao, Z. Wang, M. Yin, and G. E. Kar-
niadakis, “Physics-informed neural networks (pinns)
for fluid mechanics: a review,” Acta Mechanica
Sinica, vol. 37, no. 12, pp. 1727–1738, 2021.
http://arxiv.org/pdf/2105.09506.

[4] N. Borrel-Jensen, A. Engsig-Karup, and C.-H.
Jeong, “Physics-informed neural networks for one-
dimensional sound field predictions with parameter-
ized sources and impedance boundaries,” Jasa Ex-
press Letters, vol. 1, no. 12, 2021.

[5] K. Hornik, M. Stinchcombe, and H. White, “Multi-
layer feedforward networks are universal approxima-
tors,” Neural Networks, vol. 2, no. 5, pp. 359–366,
1989.

[6] “Learning nonlinear operators via deeponet based on
the universal approximation theorem of operators,”
Nature Machine Intelligence, vol. 3, pp. 218–229,
2021.

[7] T. Chen and H. Chen, “Universal approximation to
nonlinear operators by neural networks with arbitrary
activation functions and its application to dynami-
cal systems,” IEEE Transactions on Neural Networks,
vol. 6, no. 4, pp. 911–917, 1995.

[8] Z. Li, N. B. Kovachki, K. Azizzadenesheli, B. Liu,
K. Bhattacharya, A. M. Stuart, and A. Anandkumar,
“Fourier neural operator for parametric partial differ-
ential equations,” CoRR, vol. abs/2010.08895, 2020.

[9] S. Wang, Y. Teng, and P. Perdikaris, “Understanding
and mitigating gradient flow pathologies in physics-
informed neural networks,” SIAM Journal on Scien-
tific Computing, vol. 43, no. 5, pp. A3055–A3081,
2021.

[10] S. Wang, H. Wang, and P. Perdikaris, “Learning
the solution operator of parametric partial differential
equations with physics-informed deeponets,” 2021.

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document recog-
nition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, 2016.

[13] X. Glorot and Y. Bengio, “Understanding the diffi-
culty of training deep feedforward neural networks,”
in Proc. of the Thirteenth International Conference on
Artificial Intelligence and Statistics (Y. W. Teh and
M. Titterington, eds.), vol. 9, pp. 249–256, PMLR,
13–15 May 2010.

[14] V. Sitzmann, J. N. P. Martel, A. W. Bergman, D. B.
Lindell, and G. Wetzstein, “Implicit neural represen-
tations with periodic activation functions,” 2020.

[15] F. Pind, A. P. Engsig-Karup, C.-H. Jeong, J. S. Hes-
thaven, M. S. Mejling, and J. Strømann-Andersen,
“Time domain room acoustic simulations using the
spectral element method,” The Journal of the Acous-
tical Society of America, vol. 145, no. 6, pp. 3299–
3310, 2019.

[16] C. Wu, M. Zhu, Q. Tan, Y. Kartha, and L. Lu, “A com-
prehensive study of non-adaptive and residual-based
adaptive sampling for physics-informed neural net-
works,” Computer Methods in Applied Mechanics and
Engineering, vol. 403, p. 115671, Jan. 2023.

[17] N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin,
F. A. Hamprecht, Y. Bengio, and A. Courville, “On
the spectral bias of neural networks,” 6 2018.

[18] R. Basri, M. Galun, A. Geifman, D. Jacobs, Y. Kasten,
and S. Kritchman, “Frequency bias in neural networks
for input of non-uniform density,” 3 2020.

[19] M. Tancik, P. P. Srinivasan, B. Mildenhall,
S. Fridovich-Keil, N. Raghavan, U. Singhal, R. Ra-
mamoorthi, J. T. Barron, and R. Ng, “Fourier features
let networks learn high frequency functions in low
dimensional domains,” 6 2020.

[20] N. Benbarka, T. Hofer, H. Ul-Moqeet Riaz, and
A. Zell, “Seeing Implicit Neural Representations as
Fourier Series,” in 2022 IEEE/CVF Winter Confer-
ence on Applications of Computer Vision (WACV),
(Waikoloa, HI, USA), pp. 2283–2292, IEEE, Jan.
2022.

3176

