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ABSTRACT

Acoustic-structural interaction can be modeled by cou-
pling the linearized compressible flow equations and the
balance of momentum, governing fluid and solid me-
chanics respectively. The flow equations can accurately
model the boundary layer effects but require the bound-
ary layer to be resolved sufficiently fine, which increases
the computational cost. In this work, we extend the so-
called boundary condition approach which accounts for
the boundary losses to include boundary motion, thereby
arriving at a coupling condition between fluid and solid.
So we describe the acoustics by the Helmholtz partial dif-
ferential equation, the mechanics by the balance of mo-
mentum, and the coupling condition establishes the cou-
pling and also accounts for the boundary losses. This
strategy reduces the number of unknowns and the cou-
pling condition does not require the boundary layer to be
resolved explicitly, reducing the computational cost sig-
nificantly. The formulation is validated using several test
cases, and the results agree well with the analytical and
fully resolved compressible flow equations.

Keywords: vibro-acoustics, viscosity, boundary layers,
coupling condition

1. INTRODUCTION

The interaction between viscous fluid and an elastic struc-
ture under boundary layer effects are studied in various
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fields due to their applications such as Micro Electro Me-
chanical Systems (MEMS). The boundary layer effects
are due to viscous dissipation caused by the shear mo-
tion due to the no-slip condition at the boundary and also
due to heat exchange between the fluid and the structure.
When the characteristic size of the domain is comparable
to the boundary layer thickness, it is important to model
the damping caused by the boundary layer effects. The
above-mentioned boundary layer effects can be modeled
by coupling the linearized compressible flow equations
and balance of momentum, governing acoustics and me-
chanics respectively. But using this approach increases the
computational cost due to the introduction of extra vari-
ables such as velocity (three variables), temperature, and
pressure. And the computational mesh has to be very fine
in the vicinity of the solid boundaries to resolve the large
gradients in boundary layers.

A lot of approaches have been proposed to reduce
the computational cost by approximating the effects due
to the boundary layer effects. One such approach is pro-
posed by Berggren et al [1], where they derive a boundary
condition that accounts for boundary losses that can be
used with isentropic models such as the Helmholtz equa-
tion for the acoustic pressure. The aim of this work is
to extend this boundary condition approach by including
the boundary motion thereby arriving at a coupling condi-
tion between the acoustic and mechanics. Once derived,
the coupled problems can be treated using the standard
Helmholtz equation for acoustic pressure and the balance
of momentum for the mechanical displacement field along
with boundary coupling conditions which account for the
viscous and thermal boundary layer effects. The formula-
tion is validated against a fully resolved linearised Navier-
Stokes formulation for the fluid coupled to the solid via
non-conforming interfaces [2].
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2. GOVERNING EQUATIONS

Let us consider a compressible, viscous fluid (Ωa) cou-
pled to an elastic solid (Ωm) along a common interface
Γma as shown in fig. 1.

Figure 1: Simple sketch showing fluid-structure in-
teraction along a common interface

2.1 Mechanics

The mechanical domain (Ωm) is governed by the conser-
vation of momentum which is given by,

−ρmω
2u−∇ · σm = gm in Ωm (1)

where ρm is the density, u the displacement vector, σm

the stress tensor, and gm is the external force acting per
unit volume in the mechanical domain. We assume linear
elastic material behavior and a linearized strain displace-
ment relationship

σm = C : ϵ , ϵ =
1

2

(
∇u+ (∇u)T

)
= B(u) , (2)

where C denote the stiffness tensor and ϵ the strain ten-
sor. Equation (1) has been written in the frequency domain
with angular frequency ω.

2.2 Acoustics

The viscous and compressible fluid is modeled by the
acoustic wave equation, typically only used for inviscid
fluids

−ω2

c20
p−∇·∇p = 0 in Ωa , (3)

where c0 denotes the isentropic speed of sound in the
medium and p is the acoustic pressure (perturbation). Vis-
cous and thermal effects are confined to small regions at

the boundaries of the fluid domain, i.e. to boundary lay-
ers, and should be considered via suitable boundary con-
ditions [1] for maximum computational efficiency.

2.3 Coupling conditions

At the interface between flexible solid and viscous com-
pressible fluid the dynamic and kinematic coupling condi-
tions must be enforced. The kinematic coupling condition
describes the equality of the time derivative of mechani-
cal displacement and acoustic particle velocity. Boundary
layer effects can be accounted for following Berggren [1]
by splitting velocities into interface-normal and tangen-
tial components. In the tangential direction, the known
boundary layer solution (Stokes 2. problem) can be used.
After integration of the balance of mass, and accounting
for mechanical displacements one obtains a suitable cou-
pling condition, connecting the acoustic far-field pressure
(outside the boundary layer) and the interface displace-
ment. Similarly, by splitting the surface traction into tan-
gential and normal components and considering the ana-
lytically known relation for the viscous boundary traction
one arrives at a dynamic coupling condition accounting
for viscous and thermal boundary layer effects.

3. FINITE ELEMENT FORMULATION

The final weak form of the governing equations is ob-
tained by introducing appropriate test functions (denoted
by ’) and integrating over the computational domain,
taking advantage of integration by parts to incorporate
boundary and coupling conditions. For the mechanical
domain, i.e. from eq. (1), we obtain

− ω2

∫
Ωm

ρmu
′ · udΩ +

∫
Ωm

B(u′) : C : B(u) dΩ

+

∫
Γma

u′ · n p dΓ− µ(i− 1)

δvρfω

∫
Γma

u′ ·∇Tp dΓ

+
µω(i− 1)

δv

∫
Γma

u′ · ut dΓ

− µiω

∫
Γma

u′ ·∇u · n dΓ =

∫
Ωm

u′ · g dΩ , (4)

where δv =
√
2µ/(ρfω) is the viscous boundary layer

thickness related to the shear viscosity µ and density ρ of
the fluid.
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From the acoustics PDE (3) we obtain

− k20

∫
Ωa

p′pdΩ +

∫
Ωa

∇p′ ·∇p dΩ

+ δTk
2
0

(i− 1)(γ − 1)

2

∫
Γma

p′p dΓ

+ δv
i− 1

2

∫
Γma

∇tp
′ · ∇tp dΓ

+ ω2

∫
Γma

ρfp
′(u · n) dΓ

+ δv
ω2(1 + i)

2

∫
Γma

ρ0p
′(∇t · uT ) dΓ = 0 , (5)

where the index ( )t denotes the tangential direction. The
thermal boundary layer thickness δT =

√
2k/(ωρfcp) de-

pends on the angular frequency and fluid properties in-
cluding thermal conductivity k and specific heat capacity
at constant pressure cp.

4. NUMERICAL VALIDATION AND RESULTS
COMPARISON

To verify the formulation, we test it using the 1D plane
wave propagation in a flexible acoustic channel and com-
pare the results with the reference solution obtained from
the coupling between the flow equations and the balance
of momentum (Linflow-Mech coupling). The formula-
tion is implemented and also tested using the open-source
FEM program openCFS [3].

The example illustrates 1D wave propagation in a
flexible acoustic channel where the interface between the
fluid and the solid can deform due to the excitation ap-
plied in the fluid. Figure (2) provides information about
the model and the boundary conditions used. The cho-
sen fluid is water and the channel is made up of rubber.
The properties of the material utilized are provided in the
Tables (1) and (2). Since the boundary layer coupling

Density in Kg/m3 1000
Compression modulus in Pa 2.5·109

Shear viscosity in Pa 1.002·10−3

Table 1: Assumed material properties of water.

Density in kg/m3 920
Young’s modulus in Pa 1·105

Poisson’s ratio 0.49

Table 2: Assumed material properties for rubber.

condition includes the boundary layer effects in terms of
the boundary layer thicknesses δv and δT there is no need
to resolve near the interface. This is contrary to the full
linearised Navier-Stokes formulation [2] where boundary
layers must be appropriately resolved by the FE mesh
and pressure, velocity, and temperature degrees of free-
dom exist. The fluid is excited with a harmonic pressure

Figure 2: Geometry and BCs: Flexible acoustic
channel

peiωt for a range of frequencies in the excitation bound-
ary. Symmetry boundary conditions are applied and an
impedance-type absorbing boundary condition (ABC) is
used to absorb the sound waves which ensures zero reflec-
tion. Figure 3 shows the field results of acoustic pressure
p (in the background), acoustic velocity v (indicated using
arrows) of the fluid, and the mechanical displacement u of
the solid (in green contour). The particle velocity is high
near the interface corresponding to the deformation of the
channel. The tangential velocity at a cross-section of the
channel is compared for the two formulations in fig. 4.
One can recognize the typical Stokes boundary layer in
the reference solution for the full linearised Navier-Stokes
equation model in the fluid. For the boundary layer cou-
pling model, we only consider the far-field solution in
terms of acoustic pressure. The corresponding acoustic
far-field particle velocity is calculated using the gradient
of pressure. The calculated tangential velocity using pres-
sure corresponds to the limit velocity of the fluid, which
can be can be concluded by comparing the limit velocities
of both formulations in Figure (4).

The amplitude decay of the pressure and velocity in
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Figure 3: Field results plotted at a section of the
channel (Linflow-Mech coupling)

Figure 4: Comparison of tangential velocity at a
cross-section showing boundary layer development.

the fluid is compared in the figures (5a) and (5b). The
amplitude decays from max value to zero at the end of
the channel due to visco-thermal boundary layer effects.
It is evident from the figure that the solutions from the
boundary layer coupling formulation agree well with the
reference solution.

5. CONCLUSIONS

In this work, we present a new boundary layer coupling
formulation that allows us to model the acoustic-structural
interaction with viscous and thermal boundary layer ef-
fects at the interface. The coupling condition is derived
by extending the boundary condition approach by includ-
ing the boundary motion. The coupling condition is im-
plemented and tested using the finite element method by

(a) Pressure

(b) Velocity

Figure 5: Acoustic quantities along the center line of
the channel.

comparing the results with the full linearized compress-
ible flow equations. One of the test cases is presented
and it is evident that the model works as expected and the
results agree well with the reference solution. The pro-
posed formulation reduces the number of unknowns and
also does not require resolution of the boundary layers
by the FE mesh which dramatically reduces the compu-
tational cost.
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