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ABSTRACT
In the conventional approach for experimental airborne
sound insulation assessment, as standardized in ISO
10140-2, it is (implicitly) assumed that the sound fields
in the source and receiver rooms are diffuse. A diffuse
field is by definition a random field: it represents a con-
ceptual ensemble of rooms with the same volume and to-
tal absorption, but otherwise any possible arrangement of
boundaries and objects that scatter incoming sound waves.
Adopting a diffuse sound field model in the assessment
procedure therefore inherently introduces uncertainty on
the resulting ratings, such as the weighted sound reduc-
tion index and the spectrum adaptation terms from ISO
717-1. When determining such quantities in one particu-
lar transmission suite, this uncertainty is important below
the highest Schroeder frequency of both rooms. In this
work, closed-form expressions are presented for quantify-
ing the uncertainty on experimentally determined sound
reduction indices and related single-number ratings that is
due to the diffuse field assumption when measurements
are carried out in one particular transmission suite. They
are numerically validated and their practical use is demon-
strated in applications. They can be easily incorporated
into overall uncertainty assessment procedures such as the
detailed uncertainty budget analysis of ISO 12999-1.
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1. INTRODUCTION

The experimental assessment and rating of the airborne
sound insulation of individual building elements such as
walls and floors is crucial for designing buildings with
sufficient noise protection. However, such an assessment
faces difficulties, since the airborne sound insulation of a
particular wall type depends on its dimensions and bound-
ary conditions as well as on the properties of the sound
fields at the source and receiver sides [1]. For this reason,
standardized assessment procedures are used, in which
the wall is tested in a laboratory with suppressed flank-
ing transmission and a sufficiently large opening and the
sound fields in the source and receiver rooms are taken
to be diffuse. An example of such as procedure can be
found in ISO 10140-2 [2] which is complemented with
ISO 717-1 [3] for generating single-number ratings. The
diffuse field assumption is a crucial element of this pro-
cedure, because it needs to be satisfied to ensure (i) that
the computation of the airborne sound insulation values
from the measured spatially averaged sound pressure lev-
els is correct, and (ii) that the results do not depend on the
geometry and dimensions of the rooms.

The validity of the diffuse field assumption is fre-
quency dependent. Above the Schroeder frequency of a
room, its modal overlap is considered sufficiently high,
such that its sound field can be well approximated as dif-
fuse, irrespective of the excitation and the room details
[4]. This implies that well below the Schroeder frequency,
the sound insulation of a building element may differ sig-
nificantly from situation to situation, i.e., it may change
considerably when different source and receiver rooms are
considered, even if all other variables are kept constant.
This has been confirmed in several numerical studies such
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as [5] and [6] as well as in a series of interlaboratory tests,
an overview of which can be found in [7].

However, a diffuse field is by definition a random
field: it represents a conceptual ensemble of rooms with
the same volume and total absorption, but otherwise any
possible arrangement of boundaries and objects that scat-
ter incoming sound waves. Adopting a diffuse sound field
model in the assessment procedure therefore inherently
introduces uncertainty on the results. That uncertainty is
small above the Schroeder frequency, so the diffuse field
model is essentially deterministic at high frequencies. Be-
low the Schroeder frequency, a diffuse field model can still
be valid but in an ensemble sense rather than for one par-
ticular room-wall-room system. Recent theoretical stud-
ies have extended diffuse sound transmission models such
that not only the ensemble mean, but also the ensemble
variance and the complete probability distribution of the
diffuse airborne sound insulation can be computed [8, 9].
These studies have also confirmed, by means of detailed
numerical simulation, that the related theoretical values of
the mean, variance and probability distribution correspond
to observed sound insulation values across an ensemble
of transmission suites, also at frequencies far below the
Schroeder frequencies of the rooms, as long as the vari-
ability across that ensemble is sufficiently large.

It would be very interesting if one could quantify
the diffuse field uncertainty on measured sound insulation
data obtained in a specific test facility, especially below
the Schroeder frequencies, as this would allow to assess
to what extent these data are reproducible in other test
facilities when the other parameters (such as transmis-
sion opening dimensions) remain unchanged. It is also
an essential element when deriving a detailed uncertainty
budget of the total measurement uncertainty, as foreseen
in ISO 12999-1 [10]. However, until now this has been
an open problem, such that uncertainty quantification of
sound insulation laboratory measurements has been based
on inter-laboratory (or round robin) tests [7,10]. Although
essential for validation purposes, these tests are expensive
and time-consuming, such that inter-laboratory data are
available for only a few wall types.

In the present work, such an uncertainty quantifica-
tion if developed. It starts from the observation that the
relevant closed-form expression that was derived for the
band-averaged variance of the airborne sound insulation
of a wall caused by the diffuse field assumption in [9],
only depends on quantities that are readily available in
conventional sound insulation tests such as ISO 10140-
2 [2]. These results are first discussed and then employed

to derive a practical uncertainty assessment for the single-
numer ratings of the airborne sound reduction index that
appear in the ISO 717-1 standard [3]. The accuracy of the
expressions is investigated in a Monte Carlo simulation
study and their practical use in experiments is illustrated.

2. VARIANCE OF BAND-AVERAGED DIFFUSE
SOUND REDUCTION INDEX

The transmission loss R across a partition wall, also
known as its airborne sound insulation or sound reduction
index, is determined by the sound transmission coefficient
τ12. For a given sound power P (1)

inc that is incident upon
the wall in the source room (numbered room 1 from here
on), the transmission coefficient is defined as the ratio of
the power flow P

(1→2)
in from the source room to the re-

ceiver room (numbered room 2 from here on), to P
(1)
inc . In

engineering practice, the sound insulation is usually evalu-
ated in frequency bands ∆ := [ωl, ωu] with nominal center
frequency ωc. This results in the band-averaged transmis-
sion loss which is defined as

R∆(ωc) := −10 log τ12,∆(ωc), (1)

where the band-averaged transmission coefficient equals

τ12,∆(ωc) :=

∫ ωu

ωl
P

(1→2)
in (ω)dω∫ ωu

ωl
P

(1)
inc (ω)dω

. (2)

In order to avoid ambiguity, it is typically assumed that
P

(1)
inc (ω) be constant in each frequency band.

As discussed in Sec. 1, the transmission loss depends
on the sound fields in the source and receiver rooms. If
these are modeled as diffuse, they are random and so is
the transmission loss. It has been recently demonstrated,
both theoretically and by means of detailed simulation,
that the variance of the transmission coefficient which is
due to the diffuse field assumption equals [9]

Var [τ12,∆]

τ̂212,∆
≈ b1

N
+

a2
πm2

(
b2R1 +

b2
N

)
. (3)

In this expression, N is the number of wall modes that
contribute to the sound transmission, m2 is the modal
overlap factor of the receiver room, a2 is the diffuse
field correction factor and b1, b2 and b2R1 are bandwidth
factors. The physical meaning and the computation of
these variables is discussed below. The approximation in
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Eq. (3) holds for the case of light fluid loading (mean-
ing that the wall impedance is much larger than the ra-
diation impedance of air, which holds for the considered
building acoustics applications) and when the energy dis-
sipation in the receiver room is not dominated by sound
transmission through the wall (which is also generally the
case except when the wall has extremely low sound insu-
lation). In case the approximation would not be accurate,
more general results which are also presented in [9] can
be employed.

The modal overlap factor of a homogeneous system
component is defined as

m := ωηn, (4)

with η the damping loss factor and n the modal density.
The modal overlap factor of the receiver room m2 there-
fore requires the knowledge of its damping loss factor η2
and modal density n2 at the (band center) frequencies of
interest. The damping loss factor relates directly to the
reverberation time T :

η =
4.4π

ωT
. (5)

The modal density of the receiver room can be readily ob-
tained from its geometry; the leading term depends on its
volume V2 only [11, Eq. 8.3.5]:

n2 =
V2ω

2

2π2c3
, (6)

where c denotes the sound speed.
The number of wall modes N which contribute to the

sound transmission at a given frequency can be estimated
as [9, Eq. 45]

N ≈ 1 + πmw, (7)

where mw denotes the modal overlap factor of the wall.
The damping loss factor of the wall ηw can be obtained
from a structural reverberation test and employing (5).
The estimation of the modal density requires the wave and
phase speeds of the wall; practical expressions e.g. for thin
plates in bending are available from e.g. [11, Sec. 8.2]. If
the estimation of either ηw or nw is not practically possi-
ble, one can make use of the fact that N is bounded below
by unity:

1 ≤ N. (8)

Employing the approximation N ≈ 1 then yields an upper
bound on the transmission loss variance.

The diffuse field correction factor a2 accounts for the
fact that the variance of the diffuse field in the receiver

room depends on the excitation. It depends only on the
quantities m2 and N which were discussed above:

a2 = 1 +
2 + q(m2)

N
, (9)

where the function q(m) is defined as

q(m) := q1(m) + q2(2) (10)

q1(m) := −1 +
1

2πm
(1− exp(−2πm)) (11)

q2(m) := Ei(πm)

(
cosh(πm)− sinh(πm)

πm

)
. (12)

The function Ei denotes the exponential integral which
requires numerical evaluation. If needed, the following
approximations can be employed:

q(m) → q1(m), m → 0 (13)

q(m) → −1 +
1

πm
, m → ∞. (14)

The bandwidth factors b1, b2 and b2R1 depend only on
the relative bandwidth and the loss factors of the rooms.
They combine into a single variable for each room j:

Bj :=
ωu − ωl

ωcηj
=

ωu − ωl

4.4π
Tj . (15)

The bandwidth factors themselves are defined as follows:

bj :=
−1

B2
j

ln
(
1 +B2

j

)
+

2

Bj
atan (Bj) (16)

and

Bj :=
ωu − ωl

ωηj
(17)

b2R1 := δ1j
atan (B2)

B2
, B1 = B2 (18)

:=
B2

1b1 −B2
2b2

B2
1 −B2

2

, B1 ̸= B2. (19)

All variables that appear in the difuse transmission co-
efficient variance expression (3) have now been discussed
in detail. From (3), the variance of the diffuse transmis-
sion loss can be obtained as

Var [R∆] =
100

ln 10
log

(
1 +

Var [τ12,∆]

τ̂212,∆

)
. (20)

As argued in [9], this expression follows from the fact that
the probability distribution of the transmission coefficient

907



10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

τ12 is proportial to the probability distribution of the trans-
mitted power P (1→2)

in , which in its turn is very well ap-
proximated by a lognormal distribution. It then follows
immediately that the transmission loss R is normally dis-
tributed, a fact which can be used e.g. for computing con-
fidence intervals of R from its mean and variance.

3. VARIANCE OF SINGLE-NUMBER RATINGS

In this section, it is illustrated how the above theory can
be used for practical uncertainty assessment regarding the
single-numer ratings of airborne sound insulation that ap-
pear in ISO 717-1 [3]. The methodology is readily gener-
alized to other ratings, either standardized or not.

3.1 Weighted sound reduction index

If the sound reduction index R∆ has been determined in
1/3 octave or 1/1 octave bands covering the frequency
range from 100 to 3150 Hz, the corresponding weighted
sound reduction index Rw can be computed by compari-
son against a reference curve. Mathematically, Rw is im-
plicitly defined, as the variable for which the following
equality holds:

nb∑
j=1

max(Rw + aj −R∆j , 0) = 2nb, (21)

where aj is the difference between the value of the ref-
erence curve from [3, Table 3] and its value at 500 Hz
(52 dB) and nb denotes the number of frequency bands
(e.g. nb = 16 for 1/3 octave band data). The maximum
which appears in the above equation is not differentiable,
but for instance the following approximation can be em-
ployed

max(x, 0) ≈ 1

α
ln (1 + exp (αx)) , (22)

where α is a sharpness parameter. The approximation er-
ror is smaller than ln(2)/α. For example, if α = 70 then
the error is smaller than 0.01 dB. With this approxima-
tion, (21) transforms into

nb∑
j=1

ln (1 + eαxj ) = 2nbα, (23)

where xj is defined as

xj := Rw + aj −R∆j . (24)

By differentiating both sides of (23) to R∆j , one finds that

∂Rw

∂R∆j
=

eαxj

1 + eαxj

 nb∑
j=1

eαxj

1 + eαxj

−1

(25)

Whent the bandwidth is large enough, it is reasonable to
assume that the R∆j are uncorrelated hence statistically
independent (since they are normally distributed). The
variance of the single-number rating may then be approx-
imated as

Var [Rw] ≈
nb∑
j−1

(
∂Rw

∂R∆j

)2

Var [R∆j ] . (26)

3.2 Spectrum adapted sound reduction indices

ISO 717-1 also contains a second, fundamentally different
procedure for obtaining a single-number rating. It relates
to the overall A-weighted sound pressure level at the re-
ceiver side of the wall for a fixed source spectrum. The
corresponding rating RAs is defined as

RAs := −10 log

nb∑
j=1

10
Ljs−R∆j

10 , (27)

where Ljs is spectrum number s from [3, Table 4 or B.1].
It then follows immediately that

∂RAs

∂R∆j
= 10

Ljs−R∆j+RAs
10 . (28)

Similar considerations as for Rw then lead to

Var [RAs] ≈
nb∑
j−1

(
∂RAs

∂R∆j

)2

Var [R∆j ] . (29)

This is a known result which has been obtained e.g. in [12]
in a slightly different form.

4. NUMERICAL VERIFICATION

In this section, the validity of the previous analysis is nu-
merically verified for a particular room-wall-room sys-
tem. This example system has previously appeared in [9]
but it is extended here to include single-number ratings.
The wall is made of gypsum blocks (Young’s modulus
E = 3.15GPa, Poisson’s ratio ν = 0.2, mass density
ρ = 910 kg

m3 , loss factor η = 0.03) and measures 3.25
by 2.95 by 0.10 m. It is modeled as a simply supported
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thin Kirchhoff-Love plate. The geometry of the source
and receiver rooms is depicted in Fig. 1. The source room
is excited by a monopole source, the location of which is
also indicated in Fig. 1. Both rooms have a reverberation
time of 1.5 s and the sound speed is 343 m/s.
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Figure 1. Geometry of the room–wall–room config-
uration and monopole source location.

The rooms are random in the sense that in each room,
a total of 30 acoustic point masses, each of which has
0.4 % of the total acoustic mass V/c2 of the room, are
distributed at random locations. Note that the total num-
ber of air pockets and their individual acoustic mass have
been arbitrarily chosen; the important point is that, from a
certain frequency onwards, the randomness caused by the
wave scatterers is expected to reach a state of maximum
information entropy, which conforms to a diffuse field.

The statistics of the sound transmission loss which
follow from the detailed Monte Carlo simulation are then
compared to those of the diffuse transmission loss. The
mean diffuse transmission loss of the baffled wall is com-
puted from [9, Eq. 20]. In this way, its finite size and
boundary conditions are rigorously accounted for. The
variance of the transmission loss is computed as detailed
in Sec. 2.

In Fig. 2, the mean and standard deviation of the air-

borne sound insulation as obtained from the Monte Carlo
simulation are compared with the diffuse values. Both
harmonic results and results in 1/3 octave bands are dis-
played. At very low frequencies, the local harmonic sound
fields in the rooms are insufficiently sensitive to the pres-
ence of the small acoustic point masses that have been in-
troduced in the detailed Monte Carlo model, for reaching
a diffuse field. This is most clearly visible in the stan-
dard deviation plots: at very low frequencies, the vari-
ance is over-estimated by the diffuse field model, while at
higher frequencies, it accurately predicts the sound insu-
lation variance. Nevertheless, it is also visible in the har-
monic mean plot: at very low frequencies, individual plate
and room modes have a clear influence on the ensemble
average sound insulation, but the diffuse field model only
picks up the individual plate modes. When the frequency
increases, the natural frequencies of the rooms start to
mix well across the random ensemble, resulting in a good
match between the mean transmission losses as predicted
from the detailed and diffuse models. The frequency at
which the Monte Carlo results and the diffuse results start
to match can be lowered by considering a more random
ensemble. Finally, it can be noted that the approximation
N ≈ 1 yields a reasonable but conservative upper bound
on the variance, as expected.

In table 1, the mean and standard deviations of some
single-number ratings from ISO 717-1 as obtained from
the Monte Carlo simulation are compared with the dif-
fuse values. The Monte Carlo simulation results do not
include 1/3 octave results above 500 Hz as the related de-
tailed modal simulation model becomes computationally
very expensive at high frequencies. For this reason, only

Table 1. Mean values and 95% confidence inter-
vals of the single-numer ratings Rw, RA = RA1 =
Rw + C and RAtr = RA2 = Rw + Ctr as ob-
tained by Monte Carlo simulation for an ensemble of
room-wall-room systems and the corresponding dif-
fuse values.

rating Monte Carlo diffuse
Rw,100−500 [dB] 36.20 ± 0.75 36.28 ± 0.63
RA,100−500 [dB] 38.53 ± 0.69 38.75 ± 0.57
RAtr,100−500 [dB] 35.77 ± 0.71 36.25 ± 0.57
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Figure 2. Mean (a-b) and standard deviation (c-d) of a room-wall-room system with acoustic point masses
at random locations in the rooms. (a,c): harmonic results, (b,d) 1/3 octave band results. Blue: Monte Carlo
simulations; Red dashed lines: mean diffuse values; black dash-dotted lines: exact diffuse standard deviations;
thin grey lines: diffuse standard deviations with N ≈ 1.
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the 1/3 octave bands up to 500 Hz have been employed for
the computation of Rw and RAs. This implies e.g. that in
Eq. (21) and following, nb = 8 has been used. The values
of the reference curve and sound level spectra of ISO 717-
1 have been adopted without modification for the reduced
frequency range analysis. Both the average values and
the standard deviations σ (or, equivalently, the ±2σ con-
fidence intervals) across the considered random ensemble
agree well with the diffuse values.

5. PRACTICAL EXAMPLES

In order to illustrate the practical use of the presented ex-
pressions, they are applied here to quantify the diffuse
field uncertainty of the measured airborne sound insula-
tion of two cavity walls. The leafs of the first cavity wall
consists of a single sheet of 15mm fire-resistant plas-
terboard. They are connected to regular C-shaped metal
studs with a steel thickness of 0.6mm. The stud spac-
ing is 60 cm. The cavity has a depth of 75 mm and it is
filled with 60 mm glass wool. The second cavity wall is
identical to the first one, except that the leafs each contain
a second sheet of plasterboard. The walls were tested in
the KU Leuven Laboratory of Acoustics. The source and
receiver room both have a volume of 87 m3. The transmis-
sion opening has a width of 3.25 m and a height of 2.95 m.

Fig. 3 displays the measured sound reduction index
of both walls, together with the 95 % confidence intervals
that have been computed from Eq. (20) using the geomet-
rical room parameters detailed above and the measured
room reverberation times. The modal density of the wall
has been estimated by taking the modal density of a sin-
gle sheet of plasterboard with nominal material properties
(longitudinal wave speed 1800 m/s and loss factor 0.03).
The confidence intervals indicate how well the measure-
ment results would carry over to any other laboratory, if
only the room geometries would be different.

It can be observed in Fig. 3 that for both walls,
the nominal (i.e., ensemble-averaged) single-numer rating
R̂w is determined by the sound reduction index at low fre-
quencies as well as in the highest frequency bands, where
the coincidence dip is clearly present: in both frequency
regions, R is below the shifted reference curve. However,
there is a clear difference betwee both walls: for single
sheeting the sound reduction index crosses the reference
curve at 200 Hz while for double sheeting this happens
above 400 Hz. As the diffuse field uncertainty is the high-
est at the lowest frequencies, it can therefore be expected
that the uncertainty of Rw is larger for the wall with single
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Figure 3. Sound reduction index of a cavity wall
with (a) single sheets and (b) double sheets of plas-
terboard. Blue curves: measured (nominal, mean)
values R̂; red curves: 95,% confidence interval due
to the diffuse field assumption; black curves: shifted
reference curves corresponding to R̂w.

sheeting than for the wal with double sheeting.

This is confirmed in Table 2, where the single-numer
ratings and their 95 % confidence intervals are listed. It is
also clear that the uncertainty of Rw + Ctr is the largest
as this rating gives more weight to the lower frequency
bands.
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Table 2. Single-numer ratings of the plasterboard
walls and their uncertainties, expressed as 95 % con-
fidence intervals, due to the diffuse field assumption.

rating single sheets double sheets
Rw [dB] 46.3 ± 0.6 53.4 ± 0.5
Rw + C [dB] 42.0 ± 1.4 51.0 ± 0.9
Rw + Ctr [dB] 35.2 ± 2.0 45.7 ± 1.7

6. CONCLUSIONS

In this article, closed-form expressions have been pre-
sented for estimating the uncertainty of the sound reduc-
tion index of a wall or floor as determined in a transmis-
sion suite that is associated with the assumption of diffuse
sound fields in the source and receiver rooms. Eq. (20) and
the related expressions enable to estimate the uncertainty
of harmonic or band-averaged values. They reveal that
the uncertainty decreases with increasing room volumes,
room reverberation times, bandwidth and wall modal den-
sity. The uncertainty of single-numer ratings can be es-
timated as detailed in Sec. 3. The accuracy of the ex-
pressions has been confirmed in a Monte Carlo simulation
study and their practical use has been demonstrated using
measured laboratory data.

7. ACKNOWLEDGMENTS

This work was funded by the European Research Council
under ERC Starting Grant 714591 VirBAcous.

8. REFERENCES

[1] C. Hopkins, Sound insulation. Oxford: Elsevier Ltd.,
2007.

[2] International Organization for Standardization, ISO
10140-2: Acoustics – Laboratory measurement of
sound insulation of building elements – Part 2: Mea-
surement of airborne sound insulation, 2010.

[3] International Organization for Standardization, ISO
717-1: Acoustics – Rating of sound insulation in
buildings and of building elements – Part 1: Airborne
sound insulation, 2020.

[4] M. Schroeder, “The “Schroeder frequency” revisited,”

Journal of the Acoustical Society of America, vol. 99,
no. 5, pp. 3240–3241, 1996.

[5] W. Kropp, A. Pietrzyk, and T. Kihlman, “On the
meaning of the sound reduction index at low frequen-
cies,” Acta Acustica, vol. 2, no. 5, pp. 379–392, 1994.

[6] A. Osipov, P. Mees, and G. Vermeir, “Low-frequency
airborne sound transmission through single partitions
in buildings,” Applied Acoustics, vol. 52, no. 3–4,
pp. 273–288, 1997.

[7] V. Wittstock, “Determination of measurement uncer-
tainties in building acoustics by interlaboratory tests.
Part 1: airborne sound insulation,” Acta Acustica
united with Acustica, vol. 101, no. 1, pp. 88–98, 2015.

[8] E. Reynders, R. Langley, A. Dijckmans, and G. Ver-
meir, “A hybrid finite element - statistical energy
analysis approach to robust sound transmission mod-
elling,” Journal of Sound and Vibration, vol. 333,
no. 19, pp. 4621–4636, 2014.

[9] E. Reynders and C. Van hoorickx, “Uncertainty quan-
tification of diffuse sound insulation values,” Journal
of Sound and Vibration, vol. 544, no. 117404, pp. 1–
15, 2023.

[10] International Organization for Standardization, ISO
12999-1:2014: Acoustics – Determination and ap-
plication of measurement uncertainties in building
acoustics – Part 1: Sound insulation, 2014.

[11] R. Lyon and R. DeJong, Theory and applica-
tion of statistical energy analysis. Newton, MA:
Butterworth-Heinemann, second ed., 1995.

[12] V. Wittstock, “On the uncertainty of single-number
quantities for rating airborne sound insulation,” Acta
Acustica united with Acustica, vol. 93, no. 3, pp. 375–
386, 2007.

912


