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ABSTRACT
Porous media can be described as effective anisotropic
fluid materials that are characterized by a bulk modulus
and a full symmetric density tensor. This paper presents
a method for retrieving the bulk modulus and all six com-
ponents of the density tensor from reflection coefficients
measured in free field with an array of microphones. The
procedure consists in expressing the sound field mea-
sured in the vicinity of a rigidly backed porous layer as
a superposition of plane waves, from which the surface
impedance and the reflection coefficient are reconstructed
at the layer’s surface. The reflection properties, as well as
the pressure at the rigid backing interface, are estimated
for various source positions (corresponding to various an-
gles of incidence) and an inverse problem is formulated to
infer the effective fluid parameters. The validity of the
method is examined numerically on a synthetic porous
material, and experimentally on a manufactured porous
material.
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1. INTRODUCTION

Acoustic wave propagation and viscothermal dissipation
of acoustic energy in porous media can be described
macroscopically by an equivalent fluid model [1,2], which
requires the knowledge of several pore parameters. Al-
though some of the pore parameters can be measured di-
rectly, these methods require specialized equipment and
are often difficult to carry out [3, 4]. Indirect acoustic
methods, whereby a measurable acoustical property can
be directly related to the pore morphology, are an attrac-
tive alternative to direct measurements. In particular, the
normal incidence reflection and transmission coefficients
are directly measurable with a standardized impedance
tube and can be used to predict the behaviour of the dy-
namic density and bulk modulus of the equivalent fluid
[5, 6]. If the material is homogeneous and isotropic, these
two frequency-dependent fluid parameters are also suffi-
cient to determine the pore parameters that control the dis-
sipation of acoustic energy in the medium [7]. Yet, it has
been demonstrated that porous materials are not isotropic
(i.e., their properties are a function of orientation) [8, 9],
and that the influence of anisotropy translates in an equiv-
alent density tensor (in place of a scalar).

In a recent numerical study, Terroir et al. [10] pro-
posed a method for retrieving the bulk modulus and all six
components of the density tensor of a layer of homoge-
neous anisotropic fluid material surrounded on both sides
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by a homogeneous isotropic fluid. The procedure eval-
uates the reflection and transmission coefficients at var-
ious angles of incidence, from which an inverse prob-
lem is formulated to infer the effective material parame-
ters. This paper extends on the methodology proposed in
Terroir et al. by considering a rigidly-backed anisotropic
porous layer, and examines if the bulk modulus and den-
sity tensor can be inferred experimentally, from reflection
coefficients measured in free field with an array of micro-
phones. The procedure is based on a recent experimental
method developed in [11, 12], which consists in estimat-
ing the surface impedance at oblique incidence via sound
field reconstruction (sound pressure and particle velocity)
at the material’s surface.

2. THEORY

Let us consider a layer of homogeneous anisotropic fluid
material Ω with thickness L, bulk modulus B and density
tensor ρ. In the reference coordinate system (O, e1, e2, e3)
with position coordinates (x1, x2, x3), its boundaries are
defined by the equations x3 = 0 and x3 = L. The
layer is fixed on a rigid impervious wall at x3 ≤ 0 and
surrounded by a homogeneous isotropic fluid Ω0 with
bulk modulus B0 and scalar density ρ0 on the other side
(x3 ≥ L). We further assume that the density tensor ρ
is symmetric; that is tρ = ρ, where t denotes transpo-
sition. In particular, the orthonormal coordinate system
(eI, eII, eIII) of the layer’s principal directions can be de-
fined so that the density tensor is diagonal in this system;
that is ρ = ρ∗ = diag(ρI, ρII, ρIII), where ρI, ρII and
ρIII are the principal densities. In the reference coordi-
nate system, the density tensor reads ρ = R · ρ∗ ·t R,
where R = R3(θIII)R2(θII)R1(θI) is the rotation matrix
between the two coordinate systems, with R1, R2 and R3

being elementary matrices of rotations and θI, θII and θIII
the roll, pitch and yaw angles, respectively.

2.1 Direct problem

The pressure and velocity fields in the layer are governed
by the equations of mass and momentum conservation

jω
p

B
= ∇ · v, jωρ · v = ∇p, (1)

where ω is the angular frequency and time dependency
e−jωt is omitted.

We now consider the incident plane wave pi =
ej(k1x1+k2x2−k3(x3−L)) propagating in the domain x3 ≥
L with unit amplitude and the wavenumbers k1 =

−k0sin(θ)cos(ϕ), k2 = −k0sin(θ)sin(ϕ) and k3 =
k0cos(θ), where k0 is the wavenumber in Ω0 and θ
and ϕ are the elevation and azimuth angles measured
from (O, x3) and (O, x1), respectively. The Snell-
Descartes law yields the specularly reflected wave pr =
Rejk3(x3−L)ejkΓ·xΓ , where R is the pressure reflection co-
efficient, kΓ = k1e1 + k2e2, and xΓ = x1e1 + x2e2. In
the layer, the pressure and particle velocity fields take the
form

p = p̂(x3)ejkΓ·xΓ , (2a)
v = v̂(x3)ejkΓ·xΓ , (2b)

where p̂(x3) and v̂(x3) are independent of xΓ due to the
layer being homogeneous. Substituting Eqs (2a) and (2b)
into Eq. (1) yields the equations of apparent mass and
momentum conservation

jω
p̂

B̃
= j(q · kΓ)v̂3 +

∂v̂3
∂x3

, (3a)

jωρ̃v̂3 = j(q · kΓ)p̂+
∂p̂

∂x3
, (3b)

where v̂3 = v̂(x3) · e3, q = q1e1 + q2e2 is a dimension-
less vector, and B̃ and ρ̃ are the apparent bulk modulus
and density, respectively. As in [10], the system of differ-
ential Eqs (3a) and (3b) can be written in a matrix form
and solved by means of a matrix exponential provided the
boundary conditions

p̂(0) = p0, v̂3(0) = 0, (4a)

p̂(L) = 1 +R, v̂3(L) = (R− 1)/Z̃0, (4b)

where p0 is the sound pressure at the rigid backing, and
Z̃0 = (ρ̃0B̃0)

1/2 = Z0/cos(θ) is the apparent impedance
of air in the direction defined by e3. This leads to the
following expressions for the reflection coefficient R and
and the sound pressure at the rigid backing p0

R =
cos (k̃L) + Z̃0

Z̃
j sin (k̃L)

cos (k̃L)− Z̃0

Z̃
j sin (k̃L)

, (5a)

p0 =
2ej(q·kΓ)L

cos (k̃L)− Z̃0

Z̃
j sin (k̃L)

, (5b)

with

k̃ = ω

√
ρ̃/B̃, Z̃ =

√
ρ̃B̃ (6)

the apparent wavenumber and impedance, respectively.
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2.2 Inverse problem

The inverse problem consists in retrieving the values of
the bulk modulus B and the six components of the sym-
metric density tensor ρ11, ρ12, ρ13, ρ22, ρ23 and ρ33 (or,
more conveniently, the six components of the inverse den-
sity tensor H = ρ−1: H11, H12, H13, H22, H23 and H33)
from reflection coefficients measured at specific angles of
incidence; that is, for specific values of kΓ = (k1, k2).
Once estimated, the material parameters will be marked
(B†, H†

11, H†
12, H†

13, H†
22, H†

23, H†
33). The system in Eqs

(5a) and (5b) can be inverted as follows [10]

Z̃ = ±Z̃0

√
(R+ 1)2

(R− 1)2
−
(
p0e−j(q·kΓ)L

)2
(R− 1)2

,

(7a)

e±jk̃L =

[
R

(
1± Z̃

Z̃0

)
+

(
1∓ Z̃

Z̃0

)]
1

p0e−j(q·kΓ)L
,

(7b)

which shows that the apparent impedance and wavenum-
ber (and subsequently the apparent density and bulk mod-
ulus) can be directly retrieved from the reflection coeffi-
cient and sound pressure at the rigid backing, assuming
prior knowledge of the phase delay (q · kΓ)L. The coeffi-
cients q1 and q2 of the vector q and the apparent density ρ̃
can be shown to depend only on the inverse density tensor
according to [10]

q1 =
H13

H33
, q2 =

H23

H33
, ρ̃ =

1

H33
. (8)

Similarly, the apparent bulk modulus B̃ can be shown to
depend on the inverse density tensor, the physical bulk
modulus B and the wavenumber vector kΓ according to
[10]

ω2

B
− ω2

B̃(k1, k2)
= ξ11k

2
1 + ξ22k

2
2 + 2ξ12k1k2, (9)

with ξij = Hij −H33qiqj , ∀(i, j) ∈ {1, 2}2.
The coefficients q1 and q2 can be retrieved using two

pairs of incident waves kΓ = ±k′1e1 and kΓ = ±k′2e2

e2jq1k′
1L =

p0(k
′
1, 0)

p0(−k′1, 0)
, e2jq2k′

2L =
p0(0, k

′
2)

p0(0,−k′2)
,

(10)

and, at normal incidence, the physical bulk modulus can
be retrieved from Eq. (9) as follows

B = B̃(0, 0). (11)

Besides, the coefficients ξ11, ξ22 and ξ12 can be inferred
from Eq. (9) using (k′1, 0), (0, k

′
2) and a sixth incident

wave (k′′1 , k
′′
2 ) as follows

ξ11 =
ω2

k′21

(
1

B
− 1

B̃(k′1, 0)

)
,

(12a)

ξ22 =
ω2

k′22

(
1

B
− 1

B̃(0, k′2)

)
,

(12b)

ξ12 =
ω2

2k′′1k
′′
2

(
1

B
− 1

B̃(k′′1 , k
′′
2 )

)
− ξ11k

′′
1

2k′′2
− ξ22k

′′
2

k′′1
.

(12c)

Finally, the coefficients H13, H23 and H33 are retrieved
from Eq. 8, and the coefficients H12, H11 and H22 from
H12 = ξ12 − H33q1q2, H11 = ξ11 − H33q

2
1 and H22 =

ξ22 −H33q
2
2 , respectively.

2.3 Estimation of the reflection coefficient at oblique
incidence

The method is described in Refs [11] and [12]. The proce-
dure relies on estimating the material surface impedance
with an array of microphones, from which the reflection
coefficient is calculated. The surface impedance is esti-
mated via sound field reconstruction at the material sur-
face (sound pressure and particle velocity), using a plane-
wave expansion of the measured sound field.

Concisely, for the incident plane wave pi propagating
with unit amplitude and the wavenumbers k1, k2 and k3,
the reflected field is the plane wave pr propagating with
a symmetrical direction of propagation with respect to the
material surface and an amplitude characterized by a plane
wave reflection coefficient R defined as

R =
ZScos(θ)− 1

ZScos(θ) + 1
, (13)

where ZS is the material normalized surface impedance.
We now consider a microphone array placed in close prox-
imity to the material surface. The measured pressures at
the M microphone positions can be represented locally as
a superposition of N propagating plane waves, with direc-
tions of propagation uniformly distributed over a spherical
domain [13]. The problem can be expressed with the un-
derdetermined linear model

p = Wa, (14)
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where p ∈ CM contains the measured pressures, a ∈
CN contains the unknown plane-wave amplitudes, and
W ∈ CM×N is a sensing matrix containing the plane-
wave functions Wmn = ejkn·rm . Equation (14) can be
solved using Tikhonov regularization [13]

â = argmin
a

(||Wa− p||22 + λ||a||22), (15)

where λ is a regularization parameter selected automat-
ically using the L-curve criterion [14]. Once the vector
â has been estimated, the pressure p̂ and normal compo-
nent of the particle velocity v̂n can be reconstructed at any
point rS of the material’s surface, as a sum of plane waves.
A point-wise normalized surface impedance is calculated

ZS(rS) = − 1

ρ0c0

p̂(rS)
v̂n(rS)

, (16)

which is then averaged over a small surface to smooth out
random errors due to noise. Finally, the reflection coeffi-
cient is calculated from the plane wave model in Eq. (13).

3. NUMERICAL RESULTS

The validity of the retrieval method is examined numeri-
cally by means of simulated measurements in Matlab. As
in Ref. [10], we consider a synthetic periodic porous layer
of thickness L = 3 cm, formed by the repetition of an ellip-
soidal unit cell. This anisotropic porous layer is described
in the orthonormal coordinate system (eI, eII, eIII) of the
layer principal directions with a diagonal density tensor.
Each principal density ρJ with J = I, II, III of the diago-
nal density tensor, as well as the bulk modulus B are ap-
proximated using the Johnson-Champoux-Allard-Lafarge
(JCAL) model for rigid-framed porous media [2] (in this
case, the JCAL model relies on homogenized properties of
the unit cell, that are calculated using the multiple-scale
method [15]). The parameters of the JCAL model are
listed in Table 1. Note that some of these parameters are
scalar quantities (porosity ϕ, thermal characteristic length
Λ′ and static thermal permeability k′0), while others are
tensorial quantities (high-frequency limit of the tortuosity
α∞,J, viscous characteristic length ΛJ and static viscous
permeability k0,J). The diagonal matrix density ρ∗ is fur-
ther rotated by the roll, pitch and yaw angles θI = π/6,
θII = π/4 and θIII = π/3 to result in the fully-anisotropic
density tensor (or, equivalently, its inverse). The air prop-
erties are calculated from the temperature T = 20°C and
the atmospheric pressure P0 = 101320 Pa [16].

The array used for the simulated measurement con-
sists of 162 microphones, arranged in two square layers
of 81 microphones each, with a vertical spacing of 3 cm
between the two layers and a horizontal spacing of 2.5
cm. The array aperture is 20 cm x 20 cm. The array is
placed at a distance of 1.5 cm from the material surface.
256 plane waves are used for the plane wave expansion,
which directions of propagation are uniformly distributed
over a spherical domain. 400 point-wise impedances are
estimated at the material’s surface on a grid of dimensions
10 cm x 10 cm. Gaussian noise is added to the simu-
lated pressure with a SNR of 40 dB. The sound pressure
p0 at the rigid backing is simulated using Eq. (5b), to
which Gaussian noise is added with the same SNR of 40
dB. The following incidence angles (ϕ, θ) are used for
retrieving the bulk modulus and the six components of
the inverse density tensor: (0, π/3), (π, π/3), (π/2, π/6),
(−π/2, π/6), (0, 0), (π/3, π/4). The results are dis-
played for the center frequencies of the 1/3 octave bands
spanning from 500 Hz to 4 kHz.

Table 1. Values of the JCAL parameters (from [10]).

ϕ 0.91
k′0 [m2] 8× 10−9

k0,I [m2] 4.4× 10−9

k0,II [m2] 3.2× 10−9

k0,III [m2] 3.6× 10−9

Λ′ [m] 3.68× 10−4

ΛI [m] 2.04× 10−4

ΛII [m] 2.4× 10−4

ΛIII [m] 2.68× 10−4

α∞,I 1.18
α∞,II 1.06
α∞,III 1.04

Figure 1 shows the reconstructed reflection coefficient
for the six angles of incidence considered in the retrieval
procedure. This reflection coefficient, obtained from the
reconstructed surface impedance and Eq. (13), is in excel-
lent agreement with that of the direct problem [obtained
from Eq. (5a)]. Once the reflection coefficient has been
estimated, the retrieval method is applied to retrieve the
bulk modulus and the six components of the inverse den-
sity tensor (see Figs 2 and 3). The retrieved parameters are
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in good agreement with those used in the direct problem.

Figure 1. Reconstructed and initial real and imagi-
nary parts of the reflection coefficient for the six an-
gles of incidence considered in the retrieval proce-
dure.

4. EXPERIMENTAL RESULTS

The validity of the proposed method is tested experimen-
tally in a large (1000 m3) anechoic chamber at the Techni-
cal University of Denmark. The setup consists of a 2.4 m x
2.4 m layer of glass wool (thickness 10 cm, Saint-Gobain
Ecophon, Hyllinge, Sweden) placed on a backing plate,
an omnidirectional source, a programmable robotic arm
equipped with a microphone and programmed to recreate
the same array as in the simulated measurements in Sec.
3, and an additional microphone flush-mounted at the in-
terface between the porous layer and the backing plate.
The experimental results are not available at the time of
this writing.

5. CONCLUSION

An experimental procedure has been proposed for re-
trieving the bulk modulus and all six components of the
density tensor of a rigidly-backed layer of homogeneous
anisotropic porous material. The procedure relies on mea-
suring the reflection coefficient in free field at various

Figure 2. Reconstructed and initial real and imagi-
nary parts of the normalized bulk modulus.

angles of incidence with an array of microphones. Fu-
ture work includes a comparison of the resulting parame-
ters with experimental results obtained from reflection and
transmission coefficients measured in an impedance tube.
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