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ABSTRACT

In 2000, Ludovic Menguy and Joël Gilbert generalized the
Burgers equation in order to incorporate thermoviscous
losses due to boundary layers on the walls. This allowed
studying the nonlinear propagation in brass instruments.
Later, Joël Gilbert and colleagues were involved on the
study of high-level noise sources from which emerged the
study of nonlinear propagation of noise in tubes. This is
the subject of the present paper. The problem is solved
numerically using a fractional step method together with
a convexification method. This one is suited to nonlinear
propagation of acoustic signals containing a large num-
ber of pre-shocks and shocks which coalesce during the
propagation. Model predictions and experimental data are
compared and shown to be in a good agreement. It is
shown that the Gaussianity of narrowband noise at the in-
let of the tube is not conserved during nonlinear propaga-
tion.

Keywords: Nonlinear propagation, Burgers equation,
noise.

1. INTRODUCTION

Part of Joël Gilbert’s research has been devoted to the de-
scription of the nonlinear propagation of acoustic waves
in uniform and nonuniform tubes of finite length using
weakly nonlinear acoustic models [1, 2]. The propaga-
tion of periodic plane waves with the combined effects
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of nonlinearity and dissipation in the boundary layer of
the tube have been described using generalized Burgers
equations for forward and backward traveling waves. Nu-
merical solutions are sought in the frequency domain with
the assumption that the two waves propagating in opposite
directions do not exchange energy (no interaction). There-
fore, the internal sound field is described by the superpo-
sition of the two wave profiles. Results of this numerical
model are used to predict the brassiness behavior of brass
instruments [3]. In 2013, Joel Gilbert and colleagues were
involved on the study of high-level noise sources coupled
with a horn connected to a large reverberant room [4]. Part
of this study was an experimental work devoted to the
nonlinear propagation of narrowband noise in a uniform
tube. The present study is a continuation of this initial
work. The purpose of this article is to describe the nonlin-
ear propagation of a random signal (noise) in a tube with
a generalized Burgers equation (nonlinearity and dissipa-
tion due to friction in the boundary layer). An hybrid algo-
rithm (calculations are performed in both the time and fre-
quency domain) that includes the effects of dissipation on
the propagation of finite-amplitude sound is proposed. In
this particular case of propagation of a random signal with
formation and interaction (coalescence) of a large number
of discontinuities (shocks), the convexification method is
the tool used to obtain numerical solutions to the Burgers
equation.

2. GORVERNING EQUATION AND NUMERICAL
SOLUTION

The generalized Burgers equation [5–7] used is
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where p is the acoustic pressure, x is the coordinate along
which the plane wave propagates, τ = t− x/c0 is the re-
tarded time, c0 and ρ0 are the adiabatic sound speed and
medium density, respectively, β is the coefficient of non-
linearity. The quantities lv and lh are the viscous and ther-
mal characteristic lengths, R is the radius of the tube and
γ is the specific heat ratio.
The right hand side of Eq. (1) with a fractional deriva-
tive of order 1/2 is an operator which models the mem-
ory effect of boundary layer friction on the walls of the
tube [8–10], it is defined as

∂1/2p(x, τ)

∂τ1/2
=

1√
π τ

∗ p(x, τ) (2)

where the symbol * denotes the convolution product.

Here, only the boundary-value problem, with p pre-
scribed as a function of τ at x = 0 and with the wave-
form evolving with x, is studied (Fig. 1). The input sound
source is a random signal (noise) and a one-way wave
propagation is considered (infinite tube).
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Figure 1. Nonlinear propagation of a noise signal in an
infinite tube of radius R.

Here a phenomenological approach is used, it con-
siders the two physical processes (nonlinearity and dissi-
pation) as being independent, and therefore superposable,
when the signal propagates over small distances. Accord-
ing to the fractional step method [11–13], Eq. (1) is de-
coupled in two separate equations:
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These equations are solved independently, over each
incremental step ∆x following the Strang splitting
method [14].

The solution of Eq. (3) is expressed in the frequency
domain [7]:

p(x, ω) = p(0, ω) e−
√
jωχx . (5)

The numerical solution of the lossless Burgers Eq.
(4) is obtained by using the convexification method (in
the time domain) [15, 16]. The principles are detailed in
Ref. [17]. This method uses the mathematical tools and
properties of convex analysis. Its starting point is the
Hopf-Cole solution to the Burgers equation in the invis-
cid limit, then the Legendre-Fenchel transform and the
convex envelope construction are employed to obtain the
single-value waveform with physical meaning.

3. COMPARAISONS

Numerical predictions of the generalized Burgers equa-
tion (Eq. 1) obtained with the fractional step method are
now compared with experimental data. The waveguide is
a tube with inner radius R = 8mm (Fig. 1). Note that the
propagation of plane waves is limited to frequencies lower
than the eigen frequency of the first higher mode [5]:

f < 1.84
c0
2πR

≃ 12.6 kHz, (6)

where c0 ≃ 345 m.s−1 is the speed of sound in air.

The input sound source is a narrowband noise (center
frequency fc = 2.5 kHz and bandwidth ∆f = 1 kHz)
assumed to be Gaussian and statistically stationary. The
figure 2 gives the histograms of realizations and the Prob-
ability Density Function (PDF) of the acoustic pressures
measured at x = 0 and x = 2m. The PDF with a Gaus-
sian distribution at the inlet of the tube (x = 0) is defined
by

P (p) =
1√
2π σ

e−
(p−µ)2

2 σ2 (7)

with parameters µ = 0 and σ ≃ 1576 Pa. At distance
x = 2 m, the parameters are µ = 0 and σ ≃ 988 Pa.
Due to nonlinear interactions the Gaussianity of the signal
is not preserved during acoustic propagation in a tube as
observed by Bjørnø and Gorbatov [12, 18].

Figure 3 shows the spectral content of these acoustic
signals obtained with a discrete Fourier transform and a
Savitzky-Golay (S-G) filter [19]. The S-G filter is based
on polynomial approximation of the data in a moving
window, it has two parameters: the degree of the fitted
polynomial function k1 (for k1 = 0 and 1, a weighted
moving average and a linear regression are performed
respectively) and the length of the window k2 (the number
of data).
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Figure 2. Acoustic pressure distribution (histogram bars)
and the Probability Density Function (PDF), see Eq.(7).
Narrowband noise with a center frequency fc = 2.5 kHz
and bandwidth ∆f = 1 kHz.
x = 0 : µ = 0 and σ ≃ 1576 Pa.
x = 2m : µ = 0 and σ ≃ 988 Pa.

This representative example shows that nonlinear
processes are present with the transfer of energy from the
central band of the spectrum to both lower and higher
frequencies [15, 20]. The first process is the steepen-
ing of the waveform leading to shock formation, and
consequently to the energy transfer to high frequencies.
The second process is the coalescence of the shocks
causing the growth of the time scale characteristic of the
waveform and the corresponding energy transfer in the
low frequency range.

The agreement between the numerical and exper-
imental data is good up to the frequency of 12 kHz
(global error close to 2.5%). Beyond that, the differences
can be attributed to the limitations of the plane wave
model (in tube of radius R = 8 mm, its predictions are
limited to frequencies below 13kHz) and the microphone
conditioner.

The proposed numerical approach is an alternative to
predict the nonlinear propagation of random signals for
which analytical predictions are limited [21–23]. The pre-
dictions of this numerical method can be used in nonlinear
propagation problems concerning noise generators such as
high-speed jets [24–27].
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Figure 3. Sound Pressure Levels measured at the dis-
tance x = 0 and x = 2 m. Narrowband noise with a
center frequency fc = 2.5 kHz and bandwidth ∆f =
1 kHz. Numerical results are obtained with the frac-
tional step method. The value of the incremental step
∆x = x/N with N = 3. The three curves are obtained
with a Savitzky-Golay smoothing filter (with parameters :
k1 = 1 and k2 = 171).
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