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ABSTRACT

The localization of sound sources on the horizontal plane
is mainly aided by perceived interaural level and time dif-
ferences. However, identifying elevation cues in Head-
Related Transfer Functions (HRTFs) remains challeng-
ing. Spectral cues play a key role in localizing sources
in elevation and are highly individual, resulting from
anatomic characteristics specific to each person, such as
the shape of the pinnae, head, or torso. In a previous study,
we proposed a simple 1D convolutional neural network
(CNN) trained to classify HRTF signals into different el-
evation sectors to identify spectral elevation cues using
explainability techniques. Although the model obtained
promising results, it was only trained and validated on the
CIPIC database. In this work, we focus on developing a
model that can generalize across multiple HRTF datasets
to achieve good classification performance across various
subjects and measurements. Since each dataset is obtained
in different conditions (e.g., source signal used, distance
between emitters and receivers, spatial resolution, cali-
bration), the preprocessing of the data may significantly
impact the overall inter-dataset model performance. We
explore different preprocessing techniques and evaluate
their impact on the classification task to select meaning-
ful standardization strategies for working with multiple
HRTF datasets.
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1. INTRODUCTION

HRTFs, or Head-Related Transfer Functions, describe the
transmission of sound from a point in space to the human
ear canal [1]. This concept finds application in various
fields, such as personalized sound design for individuals,
including noise cancellation [2] and the creation of im-
mersive Virtual Reality (VR) environments [3]. Each per-
son’s HRTF is unique, influenced by factors such as head,
torso, shoulder, and pinnae shape and other characteris-
tics [4].
The main goal of our study is to develop a Convolutional
Neural Network (CNN) classification model that effec-
tively utilizes data from multiple HRTF datasets to iden-
tify the elevation location in the median plane. We aim
to explore which localization cues are crucial in determin-
ing the elevation of a given HRTF response, and hypothe-
size that the model’s ability to classify the elevation sector
will inherently capture these features, allowing for gener-
alization across all datasets. To achieve this, we employ
data standardization techniques and compare the model’s
performance across the different datasets, highlighting the
impact of dataset differences on the results.

1.1 Challenges in elevation sound source localization

To localize a sound source in the horizontal plane, var-
ious localization cues such as interaural time difference
(ITD), interaural level difference (ILD), spectral cues
(SC), and horizontal plane directivity (HPD) can be em-
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ployed. However, these cues are not equally effective for
elevation location. In the vertical plane, we are limited to
using spectral cues produced by anthropometric factors,
including reflections and refractions from the pinna and
torso [5].. Therefore, while ITD and ILD are usually suf-
ficient to determine the horizontal localization of a sound
source, spectral cues play a crucial role in determining the
elevation location.
Previous research has demonstrated that the pinna’s dis-
tortions manifest as spectral cues for elevation location
beyond the 4 kHz frequency band [6], extending up to
10 kHz [7]. Additionally, at 12 kHz, a spectral cue ap-
pears as a peak, indicating sound coming from behind the
listener [8]. Another effect to note is that the significant
notch shifts to lower frequency bands as the sound moves
from the zenith towards the lower frontal half of the me-
dian plane [9].

1.2 Past work

In a previous study [10], we trained a CNN to clas-
sify HRTFs in various elevation sectors ranging from
“Forward-Down” to “Back-Down” and the laterals as
shown in Tab. 1 using data from the CIPIC dataset [11].
We use spherical coordinates with “side” convention
which uses lateral angle ranging [−90, 90] in horizontal
plane and polar angle ranging [−90, 270] in the median
plane. We chose CNNs because of their pattern recogni-
tion capabilities [12], which have been successfully uti-
lized in capturing spatial audio features in HRTFs [13], as
well as in other sound-oriented tasks like acoustic scene
classification [14], music tagging [15], speech recogni-
tion [16], or automatic discrimination between front and
back locations in binaural recordings [17].
Our fully convolutional model consisted of three 1D con-

volutional blocks with ReLU activation and max-pooling
between blocks, followed by a last convolutional layer and
global average pooling to summarize filter responses be-
fore the last dense layer with softmax activation (Fig. 1).
This simple model achieved significant accuracy. More
details of the model and its training can be found in [10]
Next, we explored the use of common explainable artifi-
cial intelligence (XAI) techniques [18] to determine what
the model was examining to make its predictions, includ-
ing which parts of the data were most important or salient
for the prediction. We compared the results with those
of the literature. The two XAI techniques we employed
were Class Activation Mapping (CAM) [19] and Gradient
CAM (GradCam) [20].

Table 1. Differences in recording setup: ear and
source distances (meters), source signal, and ane-
choic chamber used.

Class Polar Angle Lateral Angle
Front Down [−90,−20] [−60, 60]
Front Level (−20, 20] [−60, 60]

Front Up (20, 70] [−60, 60]
Up (70, 110] [−60, 60]

Back Up (110, 160] [−60, 60]
Back Level (160, 200] [−60, 60]
Back Down (200, 270] [−60, 60]
Lateral Up [0,∞) |lateral| > 60

Lateral Down (−∞, 0) |lateral| > 60

1.2.1 Findings

We extracted significant frequency bands that presented
more saliency when being classified corresponding to dif-
ferent elevation sectors in the data We also found high
saliency (which may indicate possible elevation cues) in
the low frequency band below 500 Hz for the backward
regions from “back-down” to “up” not present in the for-
ward regions (Fig. 2).
Furthermore, we found a possible effect of complementar-
ity between opposite regions like “front-level” and “back-
level” with opposite saliencies on the 2-10 KHz frequency
band being almost identical out of this range (Fig. 3).

2. INTERDATASET MODEL ACCURACY

As previously explained, the focus of this work is on the
development of models for the elevation classification of
HRTFs, with a particular emphasis on interdataset results.
In other words, we are interested in examining how well
a model performs when trained on one HRTF dataset but
tested on data from a different dataset.

2.1 Data format used

To address the challenge of dealing with different datasets,
each with its unique characteristics and idiosyncrasies,
various efforts have been made to standardize data for-
mats, such as the Marl-Nyu format for Matlab [21]. In
our case, to facilitate working with different datasets, we
opted to use the Spatially Oriented Format for Acoustics
(SOFA) Conventions [22]. The SOFA format is character-
ized by the inclusion of self-contained information regard-
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Figure 1. Topology of the convolutional architecture developed on previous study to classify HRTFs into nine
elevation sectors.

Figure 2. CAM (top) and Grad-CAM (down)
saliency maps averaged across subjects and azimuth,
showed per elevation class.

ing the measurement setup description and all the relevant
elements, such as the listener, the source, and the room, in
each file.
Moreover, the SOFA format allows for the use of the
data as HRTFs in the frequency domain or as Head-
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Figure 3. CAM (top) and Grad-CAM (bottom)
saliency maps over the most representative sample of
each class. The predicted class probability is given in
parentheses. The color bar is red-scaled, then white
shades indicate low relevance and red ones high rel-
evance.

Related Impulse Responses (HRIRs) in the time do-
main. In this work, we use HRIRs and apply our
own preprocessing. All the data used in this work has
been acquired in .SOFA format and is currently avail-
able at https://www.sofaconventions.org/
mediawiki/index.php/Files.

2.2 Used datasets, characteristics and differences

In this work, we utilized data from 11 distinct HRTF
datasets: RIEC [23], FABIAN [24], CIPIC [11],
HUTUBS [25], AACHEN [26], LISTEN [27], ARI [28],
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Crossmod [29], SADIE [30], BiLi [31], and 3D3A [32].
In order to highlight the main differences between these
datasets that could negatively impact the compatibility of
models trained on different data, we extracted information
from various sources including the datasets’ websites, as-
sociated papers, and SOFA files.

2.2.1 Recording conditions: chambers, source Signals,
distances

Table 2. Differences in recording setup: ear and
source distances (meters), source signal, and ane-
choic chamber used.

Data Ear Source Signal 1 Anech.
RIEC 0.09 1.5 OATSP Yes
Fabian 0.0662 1.7 Swept S. Yes
CIPIC 0.09 1.5 R. Noise No 2

Hutubs 0.75 1.47 M.E.S.S. Yes
AACHEN 0.07 1.2 Swept S. Semi
Listen 0.09 2.06 Exp. S.S. Yes
ARI 0.09 1.2 Exp. S.S. Semi
Crossmod 0.09 2.06 Exp. S.S. Yes
SADIE 0.09 1.2 O. Swept S. Yes
BiLi 0.09 2.06 Exp. S.S. Yes
3D3A 0.085 0.76 M.E.S.S. Yes

As we can see on Tab. 2 there is no standard for
the average distance between ears and the distance to
the source, which can impact the resulting HRTFs’ am-
plitude levels. Moreover, in the datasets we have ob-
served, Swept Sines derived techniques are predominantly
used for the source signal, although other methods such
as pseudo-aleatory noise and the Optimized Aoshima’s
Time-Stretched Pulse (OATSP) [33] have also been em-
ployed.
However, the quality of the resulting HRTFs can be af-
fected by the chambers used for the recordings, which are
not always anechoic. This can introduce unwanted reflec-
tions and distortions that affect the accuracy and reliabil-
ity of any subsequent analysis or modeling based on these
HRTFs.

1 OATSP: Optimized Aoshima’s Time-Stretched Pulse
Swept S: Swept Sine
R. Noise: Pseudo-Aleatory Noise
M.E.S.S.: Multiple Exponential Sine Sweep

2 Room with absorbers

2.2.2 Sample data: duration, sampling Rate, and
number of subjects

Table 3. Differences in Sample Data Across Datasets
Data Samples SR (kHz) Nº Subj.
RIEC 512 48 105
Fabian 256 44.1 22
CIPIC 200 44.1 45
Hutubs 256 44.1 96
AACHEN 256 44.1 48
Listen 8192 44.1 50
ARI 256 48 200
Crossmod 8192 44.1 24
SADIE 256 48 20
BiLi 512 96 56
3D3A 2048 96 38

The variations in sampling rate (SR) and total num-
ber of samples for each HRTF are significant factors to
consider when combining data from different datasets for
model training. During preprocessing, it is important to
take into account the above factors, ensuring that the final
data representations used for model training are consistent
across the different datasets.

2.2.3 Spatial and class distribution

The spatial distribution of measurements in terms of the
angles taken can vary significantly across datasets. Dif-
ferences can arise in the density of samples, the range of
angles in elevation, and the evenness of sample distribu-
tion. In some datasets, there are imbalances with a greater
density of samples along either the elevation or the az-
imuth angles. Additionally, there may be differences in
the class distribution of the datasets, which could impact
the performance of the HRTF models trained on them (See
Tab. 4).

2.2.4 Post-processed samples

In addition, some datasets have undergone post-
processing before their release, as summarized in Tab. 5.
This post-processing includes equalization, frequency cut-
offs, numerical simulations, temporal windowing, gain
calibration, low-frequency compensation, low-frequency
extension, and diffuse field equalization. Combining raw
and processed data may result in some effects.
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Table 4. Spatial Coordinates and Class Balance
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Table 5. Processing summary of datasets in SOFA
files: Raw data, Equalization, Frequency Cut Off,
Temporal Windowing, Low Frequency Compensa-
tion, Gain Calibration, Diffuse Field Equalization,
Numerical Simulation.

Dataset

R
aw

E
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O
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FC
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D
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E
q

N
S

RIEC ✓ ✓ ✓

Fabian ✓

CIPIC ✓

Hutubs ✓

AACHEN ✓

Listen ✓

ARI ✓

Crossmod ✓

SADIE ✓ ✓ ✓

BiLi ✓ ✓

3D3A ✓

3. PRE-PROCESSING TECHNIQUES TESTED

Our objective was to standardize data from different
datasets recorded under varying conditions in order to im-

prove the performance of models trained with one type of
data in predicting the location of HRTFs from different
datasets. To accomplish this task, we experimented with
various preprocessing techniques applied to the HRTFs
in the frequency domain and used them to train different
models.

3.1 Normalization

We tested three normalization techniques: no normaliza-
tion, min-max normalization, and Average Equator En-
ergy normalization [34]. In min-max normalization, each
HRTF sample has a peak at 1 and a notch at -1. In Aver-
age Equator Energy normalization, we divide each HRTF
sample by the average HRTF energy at the equator (zero
elevation angle).

3.2 Mel warping

Although this technique was not used for standardizing
the data, we employed it to evaluate the model’s response
by converting the HRTFs to the Mel Scale, which is a
frequency scale that is more aligned with human percep-
tion. To achieve this, we divided the frequency range into
equally spaced points on the Mel Scale and selected the
frequency bins that were closest to their respective fre-
quencies in Hz.

3.3 Frequency Cut off

We conducted tests with different effective ranges of fre-
quencies, including the full range [0-22050 Hz] as well
as several restricted ranges such as [20-22050 Hz], [20-
16000 Hz], [20-22000 Hz], [50-22050 Hz], [50-16000
Hz], [50-22000 Hz], [500-22050 Hz], [500-16000 Hz],
and [500-22000 Hz]. These tests were performed with the
understanding that some datasets have a restricted func-
tional range of frequencies and some may have lower fre-
quencies simulated or processed. In addition, since in our
previous study we found useful elevation cues below 5
kHz, we wanted to evaluate results when frequencies be-
low are suppressed.

3.4 Scale amplitude

We experimented with two different HRTF scales, linear
and log10. The linear scale maintains a constant ampli-
tude ratio between the input and output signals, while the
log10 scale compresses the amplitude of the input signals
to produce a more perceptually uniform output.
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4. EXPERIMENTS

We conducted extensive experiments on each dataset, us-
ing the various methods and parameters described earlier.
We trained individual models for each dataset, as well as
a combined model with a small percentage of samples
from each dataset (10% of the training data from the other
datasets) and some combined models with data from only
a few selected datasets (the percentage varied depending
on the number of datasets selected). We then tested each
model against its own test data as well as test data from
different datasets. We were careful to use different sub-
jects for training and testing, and to maintain consistency
in the preprocessing of data; for instance, if a model was
trained with data using a Mel Warping transformation, we
tested that model against different datasets with the same
preprocessing. However, due to time constraints and the
need to train a large number of models for each experi-
ment, we limited the training of each model to 100 epochs,
with a patience of 20 (i.e., the training was stopped if there
was no improvement in performance for 20 epochs).

4.1 Results on preprocessing influence

Although some methods showed better accuracy results
for specific datasets and conditions, overall, we did not
find any parameter that was statistically significant than
the others for every case (see Tab. 6). We conducted ex-
periments by changing only one variable at a time while
keeping the rest fixed, and after analyzing the results, we
selected the final tests with the following parameters: Av-
erage Equator Energy Normalization, Full Range of fre-
quencies (without cut off), no Mel Warping, and linear
amplitude. These parameters were chosen because they
yielded slightly better results.

Table 6. P-Values after testing different parameters
of: Dataset, Amplitude, Normalization, Mel Warp,
Frequecy Cut Off

Data Ampl Norm Mel W. Freq Cut
2.12e-9 .64 .9 .35 .0503

4.2 Inter-dataset results

As expected, each model achieved good results when
tested against the dataset to which its train samples be-
long. However, we obtained poor accuracy results against

datasets other than the one used for training. The com-
bined dataset achieved the best result (Fig. 4), as it
achieved acceptable accuracy against all datasets, even
though it was trained with a reduced number of samples
from each. It is worth noting that the limited number of
training epochs may have affected the results.
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Figure 4. Inter-Dataset Accuracy Results

5. DISCUSSION

We observed an interesting phenomenon where certain
sets or cliques of datasets demonstrated a higher accuracy
within themselves than against other datasets. Two dis-
tinct cliques were identified: one comprising the Cross-
mod, BiLi, and Listen datasets, and the other consisting
of CIPIC, Riec, Hutubs, and AACHEN.
The datasets in the first clique, Crossmod, BiLi, and
Listen, share several similarities, such as the same dis-
tance between ears (0.09), same distance to the source
(2.06), use of an anechoic chamber, and same source sig-
nal (Exponential Sine Sweep). Conversely, the datasets in
the second clique, CIPIC, Riec, Hutubs, and AACHEN,
do not appear to share any discernible characteristic that
would explain the observed inter-dataset accuracy results.

6. FUTURE WORK

Our future work involves applying Explainable Artificial
Intelligence (XAI) techniques to analyze the results ob-
tained from working with various datasets. Our goal is to
identify the factors responsible for the poor performance
of classification models trained using different data and
determine the most significant factors that contribute to
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this behavior. We will investigate different conditions that
may have an impact on HRTF recordings, such as the dis-
tance between ears, distance to the emitter, source signal
used, and data processing techniques. Additionally, we
will analyze how these conditions affect the saliency of
HRTF frequency bands and their importance to the clas-
sification model. Once the causes are identified, we aim
to propose standardization techniques suitable for work-
ing with heterogeneous HRTF datasets in related problems
such as HRTF personalization.
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