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ABSTRACT

Characterizing acoustic fields over space is required in
sound field analysis, spatial audio, as well as several ap-
plications within room acoustics and virtual reality. In
order to measure a sound field over medium/large vol-
umes, a large number of sensors have to be distributed
over space. In this study we investigate optimal distri-
butions of sensors for capturing acoustic fields in space.
The positions are selected to maximize the sampled infor-
mation and minimize the uncertainty in the reconstructed
field. We show that the proposed optimization substan-
tially reduces the amount of measurements in comparison
to uniform or randomized distributions. The proposed op-
timal selection procedure can also be significant for other
data-scarce applications.

Keywords: sensor selection, sound field reconstruction,
optimal sampling

1. INTRODUCTION

The characterization of sound fields over space is central
to acoustic research, e.g., in sound field control [1], spa-
tial audio [2], source localization [3], and analysis of room
acoustics [4]. One of the biggest challenges when char-
acterizing sound fields over space is the large number of
measurements required, which increases with frequency
and size of the sampled domain [5]. Therefore, optimizing
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the distribution of measurement is very valuable, as it can
extend the bandwidth and size of the reconstructed sound
field for a given number of microphones, or alternatively,
reduce the sampling requirements for a given reconstruc-
tion accuracy.

The design of microphone distributions over space
has been partly guided by stability criteria. Spherical ar-
rays, in which microphones are placed on the surface of a
sphere, is one of the most popular microphone array con-
figurations [6]. In general, it is beneficial to place most of
the available sensors on the boundary of the sampled do-
main [7], regardless of its shape. However, placing all the
sensors on the domain’s boundary leads to instabilities at
the domain’s eigenfrequencies [6,8]. Such instabilities are
a well-known problem of open array configurations, and
several strategies exist to increase the robustness, includ-
ing flush-mounting the microphones on a rigid sphere [9],
using directional microphones [10], or placing a fraction
of the sensors in the interior of the domain [7, 8, 11]. The
optimization of interior positions to stabilize open arrays
has been studied for spherical, cubic and ellipsoidal do-
mains [8,11]. However, in applications such as sound field
control and spatial audio, there might be restrictions as to
where the sensors can be placed [12, 13], e.g., if the sen-
sors can only be placed around, but not inside, the domain
of interest.

In this extended abstract we examine the optimization
of sensor positions for characterizing acoustic fields. We
outline a selection method that aims at minimizing the er-
ror when estimating the amplitude of the waves that com-
pose the sound field (presented in [14]), and we propose
an extension in which the goal is to minimize the error
when estimating the pressure in the reconstruction area.
We present results for a test case and compare the perfor-
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mance of the proposed methods with a uniform sampling
on the boundary and random sampling distributions.

2. METHOD

2.1 Model

A harmonic pressure field, y(r)ejωt, at frequency ω and
inside the domain Ω (r ∈ Ω, and Ω ⊂ R3) can be de-
scribed as a superposition of plane waves [15], such that

y = Ax+ e, (1)

where y ∈ CM is the vector of pressure values at posi-
tions r1, . . . , rM . The matrix A ∈ CM×N , with elements
aij = ejkj ·ri , represents the plane wave expansion. Here,
kj ∈ R3 is the wavenumber vector of the jth plane wave.
The wavenumber components are uniformly sampled on
the surface of the radiation sphere with radius ω/c, where
c is the speed of sound. 1 The vector x ∈ CN contains the
amplitude and phase of the N plane waves, which are to
be estimated from the measurements. The vector e ∈ CM

accounts for additive measurement noise.
Once an estimation of the wave coefficient, x̃, is ob-

tained, the pressure at any set of positions s1, . . . sL ∈ Ω
can be reconstructed via

yB = Bx̃, (2)

where yB is the pressure at the reconstruction positions,
and B ∈ CL×N , with elements bij = ejkj ·si , is the recon-
struction matrix.

Optimal sensor placement aims at selecting the S sen-
sor positions from the M candidates that are optimal to
estimate the sound field. The selection is represented by
the activation vector z = [z1, ..., zM ]T , with zi ∈ {0, 1}
indicating whether the ith sensor is selected or not. The se-
lection matrix, Z ∈ {0, 1}S×M , results from removing the
zero-rows from Diag(z). It is noted that ZTZ = Diag(z).
The selected pressure measurements, yz , are obtained by
multiplying both sides of Eq. (1) with the selection ma-
trix,

yz = Zy = ZAx+ Ze. (3)

2.2 Estimation

The estimation of x is addressed in the Bayesian frame-
work. The measurement noise is modeled as i.i.d. Gaus-

1 This representation is valid assuming that Ω is convex, no
sound sources are inside Ω, and Ω is relatively far from any
source so that the evanescent field can be ignored.

sian with variance β−1. The likelihood is then

p(yz|x, β) = CN (yz|Ax, β−1I). (4)

We assign a Gaussian prior distribution with variance α−1

to the wave coefficients, such that

p(x|α) = CN (x|0, α−1I). (5)

The posterior distribution is found via Bayes’ theorem,

p(x|yz, α, β) ∝ p(yz|x, β)p(x|α) = CN (x|x̃,Σ), (6)

where x̃ is the maximum a posteriori estimate,

x̃ = βΣAHZHyz, (7)

and Σ is the covariance matrix,

Σ = (βAHZHZA+ αI)−1. (8)

The estimate x̃ corresponds to the least squares ℓ2-norm
regularized solution [16], and it is determined by the co-
variance matrix Σ, which in turn depends on the selected
sensors via Z.

2.3 Optimization problem

The mean squared error of any estimator is lower bounded
by the Bayesian Cramér-Rao bound [17],

E
{
(x̃− x)(x̃− x)H} ⪰ F−1 (9)

where F is the Bayesian Fisher information matrix, de-
fined as

F ≜ E
{
∇x∗ log p(y,x) [∇x∗ log p(y,x)]

H
}
, (10)

implying that

E
{
|xi − x̃i|2

}
≥ F−1

ii , (11)

i.e., the mean squared error when estimating the ith wave
coefficient is lower bounded by the ith element of the di-
agonal of F−1. For the model described in Sections 2.1
and 2.2 it can be shown that Σ = F−1.

We formulate the optimal selection as the problem of
finding the sensors that minimize the mean squared error
when estimating the wave coefficients [14]. The optimiza-
tion problem is then

z = argmin tr(Σ) s.t. ||z||0 = S , zi ∈ {0, 1} ,
(12)
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where tr(Σ) denotes the trace of Σ. The optimization
problem (12) is S-choose-M combinatorial, and finding
an exact solution by sweeping through all possible com-
binations is intractable. [18, 19] In this study we approxi-
mate the solution to (12) via convex relaxation [19–21].

The selection problem (12) yields a sensor distribu-
tion that is optimal in terms of estimating x. However,
it is often required to accurately recover the pressure in a
given domain, but not the wave coefficients. We therefore
propose an extension of the method, in which the sensors
that minimize the mean squared error of the reconstructed
pressure, Bx, are selected. In this case the optimization
problem becomes,

z = argmin tr(BΣBH) s.t. ||z||0 = S , zi ∈ {0, 1} .
(13)

The reason for choosing to minimize the error in estimat-
ing Bx is that a large error in estimating x does not neces-
sarily translates into a large error in estimating Bx. In ad-
dition, applications such as sound field control and virtual
sensing require to predict the pressure at a region where
sensors cannot be placed (e.g., inside a listening or con-
trol area), regardless of the coefficients used to describe
the sound field.

Both optimization methods can be extended to ac-
count for several frequencies simultaneously by minimiz-
ing a sum of covariance matrices, so that problem (12)
becomes

z = argmin
∑
j=1

tr(Σj) s.t. ||z||0 = S , zi ∈ {0, 1} ,

(14)
where Σj is the covariance matrix for the jth frequency
used in the optimization [defined in Eq. (8)]. Problem
(13) can be modified in the same way.

3. RESULTS

A numerical experiment is conducted for the configura-
tion shown in Fig. 1. The reconstruction area is defined as
an ellipse with principal axes of length 1 m and 0.4 m (yel-
low area in Fig. 1). The measurement area is defined as
the difference between the reconstruction area and a rect-
angle of sides 1.4 m and 0.7 m (red area in Fig. 1). Both
areas are discretized into small elements of approximately
3 cm using a uniform triangular mesh [22]. The number
of candidate positions M is 866, the sensor budget S is set
to 78, and the number of positions inside the reconstruc-
tion area L is 395. The experiment is performed in 2D for

Figure 1. Setup of the numerical study.

the sake of clarity. The extension to the 3D case is straight
forward.

Figure 2 shows the sensor distributions examined in
this study. Figure 2(a) corresponds to the uniform sam-
pling of the boundary enclosing the reconstruction do-
main. Figure 2(b) corresponds to a random selection of
samples from the candidate positions. Figure 2(c) corre-
sponds to the sensor selection optimized to estimate x,
and Fig. 2(d) to the selection optimized for reconstruct-
ing Bx, as described in Section 2.3. The frequency used
for the optimization in both cases is 1 kHz. The multi-
frequency selection of problem (14) was also tested, us-
ing the ellipse eigenfrequencies in the optimization. The
resulting distributions were rather similar to the ones ob-
tained using only 1 kHz, with slightly lower errors when
the single frequency was used. The results shown hence-
forth are for the optimization with 1 kHz. The selection
optimized for estimating the wave coefficients [Fig. 2(c)]
places a large fraction of the available sensors on the outer
boundary of the measurement area (along the sides of the
rectangle). On the contrary, the selection optimized for es-
timating the pressure inside the reconstruction area [Fig.
2(d)] concentrates many samples on the boundary of the
ellipse. We observe that none of the optimized selections
places all of the sensors on the boundaries of the measure-
ment domain.

A quantitative comparison across frequency is shown
in Fig. 3. Figure 3(a) shows the condition number of ZA,
defined as the ratio between its maximal and minimal sin-
gular values. The condition number is a measure for the
robustness of the estimation of x to errors in the measure-
ments, and it has been used as a criterion for the design
of microphone arrays [11]. A large condition number in-
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Figure 2. Sensor distributions. White circles indi-
cate the non-selected candidate positions, black cir-
cles indicate the selected positions. (a) Uniform sam-
pling on the boundary of the reconstruction area. (b)
Random selection of samples. (c) Selection opti-
mized for the estimation of x. (d) Selection opti-
mized for the reconstruction Bx. All distributions
comprise of the same number of sensors, S = 78.

Figure 3. Results for the sensor distributions of Fig.
2 over frequency. (a) Condition number of ZA. (b)
Error in the estimation of x. (c) Error in the recon-
struction Bx.
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dicates that small changes in the input, such as noise, get
largely amplified in the estimation. Figure 3(a) shows that
the boundary sampling is unstable at the eigenfrequencies
of the elliptical reconstruction area (large condition num-
bers at frequencies 622 Hz, 761 Hz, 906 Hz, etc.). The
other three distributions (random and optimized) avoid the
instability at such frequencies by distributing sensors over
the whole candidate area. Placing a large fraction of the
available sensors on the outer boundary, far from the cen-
ter, seems to reduce the condition number. This can be
seen particularly for the selection optimized for estimat-
ing x, [Fig. 2(c)] as it is the distribution that achieves the
smallest condition number of them all [yellow curve in
Fig. 3(a)].

The estimation and reconstruction errors are exam-
ined by means of a Monte Carlo simulation. We generate
K = 500 instances of a random vector of coefficients x by
drawing independent samples from a normal distribution.
Noisy measurements are then computed for each of the
sensor distributions of Fig. 2. The variance of the noise
and coefficients, β−1 and α−1, are chosen to yield a SNR
of approximately 13 dB. The MAP estimate x̃ for each
sound field is computed via Eq. (7). The pressure field
in the reconstruction area is computed via Eq. (2), where
B is the reconstruction matrix for the positions inside the
ellipse.

The normalized root mean squared error (nRMSE) for
the estimation of x is calculated as

nRMSE(x̃) =

√√√√∑K
i=1 tr [(x̃i − xi)(x̃i − xi)H]∑K

i=1 ||xi||22
. (15)

The nRMSE for the reconstruction is calculated by replac-
ing xi and x̃i for Bxi and Bx̃i, respectively, in Eq. (15).

Figure 3(b) shows the normalized error when esti-
mating x for the different distributions. A general trend
of larger estimation errors at lower frequencies is ob-
served, in agreement with the condition number results
[Fig. 3(a)]. The uniform distribution on the ellipse bound-
ary presents the largest error of all the studied distribu-
tions. In particular, the instabilities at the eigenfrequen-
cies lead to a high error at such frequencies [peaks in blue
line of Fig. 3(b)]. The selection optimized for recon-
structing the pressure field [purple line in Fig. 3(b)] avoids
the instabilities at the eigenfrequencies, despite placing a
large fraction of sensors on the boundary of the ellipse
[Fig. 2(d)]. The lowest estimation error is achieved by the
selection optimized for estimating x [yellow line in Fig.
3(b)], demonstrating the effectiveness of the optimization

method.
Figure 3(c) shows the normalized error when recon-

structing Bx for the different distributions. In general, the
reconstruction error increases with frequency. At low fre-
quencies the simulated sound fields are rather even over
the reconstruction area, 2 and thus the exact recovery of x
is not critical for a successful estimation of Bx – as long
as the overall level is correctly recovered. The selection
optimized for reconstructing the pressure field achieves
the lowest error over the entire frequency range [purple
line in Fig. 3(c)], with approximately 5% improvement
with respect to the random sampling and the other op-
timized distribution [red and yellow lines in Fig. 3(c)].
The boundary sampling [blue line in Fig. 3(c)] presents
very large reconstruction errors at the eigenfrequencies.
The results indicate that the condition number of ZA or
the estimation error might not be the best guiding crite-
ria for the selection of microphone positions in applica-
tions where the goal is to reconstruct a sound field over
space (e.g., sound filed control and spatial audio). The
results show more accurate reconstructions of the pres-
sure field when the covariance matrix of Bx is used in the
optimization. Therefore, the choice objective function in
the optimal sensor placement depends on the application,
e.g., in source localization it is interesting to estimate the
wave amplitudes x [solution to problem (12)], while in
sound field control and virtual sensing it is of interest to
recover the pressure in the reconstruction area Bx [solu-
tion to problem (13)].

4. CONCLUSION

The optimal selection of sensor positions for character-
izing acoustic fields have been investigated, and two se-
lection methods have been examined. In the first method
the objective is to find the sensors that lead to the min-
imum mean squared error in the estimation of the wave
coefficients that describe the sound field. In the second
method the goal is to find the sensor positions that result
in the minimum mean squared error in the estimation of
the pressure over the reconstruction area. A numerical
study shows that the optimized distributions outperform
a uniform distribution on the boundary of the reconstruc-
tion area and a random distribution over the measurement

2 This is due to (a) at low frequencies (lower than approxi-
mately 350 Hz) the wavelengths are larger than the reconstruc-
tion area, and (b) in the Monte Carlo simulation the wave coeffi-
cients are independent and identically distributed.
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area. The results demonstrate that the optimized distribu-
tions archive lower errors over a large frequency range,
despite them being optimized for a single frequency. We
anticipate that the proposed optimal selection methods can
be relevant for other data-scarce applications.
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