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ABSTRACT

Hearing aids are typically equipped with multiple micro-
phones to exploit spatial information for source locali-
sation and speech enhancement. Especially for hearing
aids, a good source localisation is important: it not only
guides source separation methods but can also be used to
enhance spatial cues, increasing user-awareness of impor-
tant events in their surroundings. We use a state-of-the-art
deep neural network (DNN) to perform binaural direction-
of-arrival (DoA) estimation, where the DNN uses infor-
mation from all microphones at both ears. However, hear-
ing aids have limited bandwidth to exchange this data.
Bluetooth low-energy (BLE) is emerging as an attractive
option to facilitate such data exchange, with the LC3plus
codec offering several bitrate and latency trade-off possi-
bilities. In this paper, we investigate the effect of such
lossy codecs on localisation accuracy. Specifically, we
consider two conditions: processing at one ear vs pro-
cessing at a central point, which influences the number of
channels that need to be encoded. Performance is bench-
marked against a baseline that allows full audio-exchange
- yielding valuable insights into the usage of DNNs un-
der lossy encoding. We also extend the Pyroomacoustics
library to include hearing-device and head-related trans-
fer functions (HD-HRTFs) to suitably train the networks.
This can also benefit other researchers in the field.
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1. INTRODUCTION

Sound source localisation plays a vital part in the audi-
tory experience. One example can be in group conversa-
tions, when the conversation switches from one speaker
to another, the listener needs to locate the new speaker
instantly, as otherwise, understanding may be reduced se-
riously [1]. Especially for a hearing-impaired person, lo-
calisation plays a more significant role in speech commu-
nication difficulties than is usually appreciated [2]. Thus
algorithms for binaural enhancement of speech in hearing
aids are faced with the challenging task of maintaining the
spatial cues of target and interfering sound sources, which
requires a good, implicit or explicit, DoA estimation [3].

For binaural hearing aid-based localisation, one way
of estimating the DoAs is by matching the estimated
relative transfer functions (RTFs) of the microphones
with ideal, anechoic RTFs from each direction. It has
been shown that this method outperforms the dual de-
lay line approach [4] and pressure-energy gradient ap-
proach [5]. However, prior knowledge of speaker-specific
anechoic head-related transfer function (HRTF) or RTFs
from all angles is required for this approach. In [6], an-
other method with the maximum likelihood framework
is proposed assuming accessibility of the noise-free ver-
sion of the target signal. Whereas model-based meth-
ods like these strongly rely on prior information and sim-
plified assumptions, data-driven deep learning methods
have recently been widely investigated in DoA estima-
tion. In [7], long short-term memory (LSTM) or tem-
poral convolutional network (TCN) are integrated into
the convolutional neural network (CNN)-based DoA es-
timator of [8] to exploit the temporal context. This ap-
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proach was shown to outperform existing state-of-the-
art methods including steered response power with phase
transform (SPR-PHAT) [9], informed phase unwrapping
(IPU)-least-squares (LS) method [10], and the CNN base-
line [11]. Here, we first extend the CNN/LSTM model
of [7] for binaural DoA estimation in hearing aids. Since
we no longer deal with free-field arrayes, this requires the
incorporation of the measured, hearing-device and head-
related transfer functions (HD-HRTFs) [12] of the respec-
tive microphones in the training paradigm. Based on this
extension, we investigate the influence of lossy codecs on
binaural DoA estimation and evaluate mitigating strate-
gies as well. This forms the key contribution of this work.

Data exchange in hearing aids is often achieved
by wireless communication platforms including Blue-
tooth and Digital Enhanced Cordless Telecommunica-
tions. LC3 and its extension LC3plus [13], which stands
for low complexity communications codec, are promising
technologies that aim to provide the solution to transmit
high-quality audio over wireless accessories at reduced
bandwidth/bitrates 1 . In the application of hearing aids,
to get binaural information, the recorded signals from the
microphones on the devices can be pooled in two ways: (i)
when the device at one ear is responsible for the process-
ing, the signals from the device on the other ear are trans-
mitted to this device, or (ii) when the processing has to be
done on an external, central processor, signals from both
devices need to be transmitted to this processor. In both
cases, a certain amount of audio data needs to go through
the codec. As the codec is typically lossy, this will change
the interaural time differences (ITDs) and interaural level
differences (ILDs), which are important DoA cues, lead-
ing to a less accurate localisation – especially in the case
of data-driven approaches. In this paper, both cases are in-
vestigated under the use of the lossy BLE LC3plus codec.
Next, model training is performed with the codec in the
loop to examine if the degradations caused by the codec
can be recovered through (re-)training or if the DoA infor-
mation is totally lost.

The paper is structured as follows: Section 2 presents
the signal feature and the baseline multi-source binau-
ral DoA estimation based on our state-of-the-art CRNN
model. In Section 3, DoA estimation using the two data-
exchange paradigms is briefly presented. The experimen-
tal setup including microphone array and training data
generation is discussed in Section 4. In Section 5, first,

1 https://www.iis.fraunhofer.de/en/ff/
amm/communication/lc3.html

the performance of the baseline DoA estimator is evalu-
ated under three conditions: (i) when no codec is used
(full-bandwidth audio exchange), (ii) when only 3 chan-
nels are encoded, and (iii) when all 6 channels are en-
coded. Next, the performance improvement with codec-
in-training-loop is evaluated for the latter two conditions.
We conclude with some thoughts for further generalisa-
tion and directions for future work.

2. MULTI-SOURCE BINAURAL DOA
ESTIMATION

2.1 Behind-the-ear Microphone Array

The binaural microphone array adopted in this paper con-
sists of 6 microphones, 3 on each of the two behind-the-
ear (BTE) devices [14]. The microphone geometry for
each device is shown in Fig.1 where the 3 microphone
channels are denoted as: front ( Fr), middle ( Mid) and
rear ( Rear). The distance between neighboring micro-
phones on each device is approximately 7.6 mm. This
configuration is used for training and testing.

Figure 1. The positioning of two BTE arrays at each
ear and channel index of each microphone

2.2 Feature extraction for data-driven approaches

We consider the N -channel microphone array signals
in the short-time Fourier transformation (STFT) domain,
where the signal observed at the n-th microphone can be
modelled as

Yn(k,m) =
∑
j

Sj,n(k,m) + Vn(k,m). (1)

k ∈ {1, ...,K} and m ∈ {1, ...,M} represent the fre-
quency index and frame index respectively. Sj,n(k,m)
is the STFT representation of the signal from source j at
microphone n. Vn(k,m) is the additive noise.

In [15], a comprehensive summary of input features
used in source localisation is provided. Consistent with
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[7, 11], we use the phase component of the magnitude-
phase representation of 2 as input features:

Yn(k,m) = |Yn(k,m)|ej ̸ Yn(k,m). (2)

To avoid the 2π phase wrapping problem, we take the sine
and cosine of the phase. Additionally, we include the nor-
malized magnitude, giving us the following vector of 3
elements as input for the nth channel:

Fn(k,m) =

sin(̸ Yn(k,m))

cos( ̸ Yn(k,m))

|Y n(k,m)|

 , (3)

By normalizing the magnitude with

|Y n(k,m)| = |Yn(k,m)|

/(
1

N

N∑
ν=1

|Yν(k,m)|

)
,

(4)
the differences between the channels are captured. This
is motivated by the important role that the ILDs play in
binaural localisation.

From the feature vectors Fn(k,m) for all channels
and all frequency bins, we form the tensor Ψ(m) of
size 3×N ×K ′ that serves as input to the DNN, where
K ′ = K/2 + 1.

2.3 CNN-based model architecture

The azimuth angle range of 0◦ to 360◦ is divided into I
sectors, with a fixed resolution. DoA estimation may then
be seen as a classification problem, where probabilities of
source activity are calculated for each sector. In this work,
we consider I = 72, with a resolution of 5◦, which can be
represented by φi, and i = 0, 1, ..., 72.

The baseline DoA estimation model illustrated in
Fig.2 is a straightforward extension of the CNN/LSTM
model in [7] to the binaural case, which is referred to
as convolutional recurrent neural network (CRNN) in this
paper. The latent feature extraction is done by (N − 1)
convolutional layers, applied across the channel dimen-
sion, separately for each time-frequency bin. One fully
connected layer aggregates information along the fre-
quency dimension while the LSTM layer is used to pro-
vide temporal context to the network. Note that this model
structure is real-time capable since only the STFT opera-
tion requires some latency. The final probability of each
DoA class is then calculated by the output layer with sig-
moid activation. The desired output P (φi|F (m), F (m −
1), ...) is a multi-hot vector consisting of 0 (inactive) and
1 (active) for each DoA.

Figure 2. CRNN for binaural sound source localisa-
tion.

3. INFLUENCE OF LC3PLUS CODEC ON
LOCALISATION PERFORMANCE

Two practical applications are considered for LC3plus:
one is transferring the observed signals from the device
at one ear to the other, and the other is transferring the
observed signals from the devices at both ears to a cen-
tral processor – as depicted in Fig.3. In both situations,
the DoA information contained in the microphone sig-
nals is to some extent changed. To evaluate the influence
of LC3plus codec, the CRNN with full-bandwidth (unen-
coded) data exchange is evaluated as the baseline model,
under different conditions. Note that the bitrate of 32 kbps
are utilized for LC3plus codec (unless stated otherwise).

4. EXPERIMENTAL SETUP

All datasets are generated by convolving BRIRs and dry
speech signals, with diffuse noise added on top. The sam-
pling rate is fixed at 16 kHz.
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Table 1. Data generation: training, validation and test set

Training set

Speech signals 7438 utterances from TIMIT and PTDB-TUG dataset
Room dimensions (m) R1: (6× 6× 2.5), R2: (5× 4× 2.8), R3: (10× 6× 2.4),

R4: (8× 3× 3.1), R5: (8× 5× 2.9), R6: (4× 9× 3.3),
R7: (7× 7× 2.3), R8: (5× 6× 3.6), R9: (9× 6× 3.2),
R10: (11× 7× 3)

T60 R1: 0.3 s, R2: 0.2 s, R3: 0.8 s, R4: 0.4 s, R5: 0.6 s, R6: 0.5 s,
R7: 0.7 s, R8: 0.45 s, R9: 0.55 s, R10: 0.75 s

Array positions 7 different positions in each of the rooms
Source-array distances 20%, 40%, 60% and 80% of the distance between array and wall
Additive noise Simulated diffuse noises with SNRs from 0 to 30 dB

Validation set

Speech signals 2280 utterances TIMIT and PTDB-TUG dataset
Room dimensions(m) R11: (5.5× 7.5× 2.7) , R12: (8.5× 4.5× 3.5)),

R13: (6.5× 6.5× 2.3)
T60 R11: 0.525 s, R12: 0.625 s, R13: 0.475 s
Array positions 4 different positions in each of the rooms
Source-array distances 30%, 50%, 70% and 85% of the distance between array and wall
Additive noise Simulated diffuse noises with SNRs from 0 to 30 dB

Test set

Speech signals 1444 utterances from TSP speech database
Room dimensions & T60 R14: (5× 4× 2.5) m, 0.2 s; R15: (7× 6× 3.5), 0.6 s
Array positions 4 different positions in each room
Source-array distances 1m, 2m, 3m (Only with the angles inside the room)
Additive noise Simulated diffuse noises with SNRs of [5, 10 ,15] dB or no noise

4.1 BRIR

BRIR provides the binaural representation of the sound
which not only contains the room characteristics for
specific listener and source configurations, but also the
listener-specific features. It can be interpreted as the
combination of the temporal dynamic of an echoic envi-
ronment - RIR, with the hearing-device and head-related
transfer functions (HD-HRTFs) of the specific listener.
To obtain a sufficiently large BRIR dataset for train-
ing, instead of recording BRIRs for each combination of
parameters, room acoustic simulation methods are uti-
lized to generate synthetic, psycho-acoustically convinc-
ing BRIRs that generalise well to real-life conditions. We
extend the Pyroomacoustics library [16] to integrate the
RIR simulator with different HRTF sets described in Spa-
tially Oriented Format for Acoustics (SOFA) [17]. The
implementation is based on the existing image-source

model [18] by spatial discretisation of the image-source
locations to the nearest provided HRTF for all elements in
the microphone array.

To make the localisation model generalise to different
rooms, in total 15 rooms of different dimensions and T60s
are considered. This is summarised in Tab. 1.

4.2 Dataset generation

For the training and validation set, as illustrated in Tab. 1,
dry speech sources from different speakers included in the
TIMIT [19] and PTDB-TUG [20] databases are adopted.
7438 utterances are available for training, and 2280 for
validation, with no overlap in terms of the speakers. Train-
ing data is generated in the same manner as in [7]. We gen-
erate samples in 2 s segments, and in each segment either
zero, one, or two sources can be concurrently active [7]. A
Markov model with two states (active and inactive) deter-
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Figure 3. Different ways of encoding: encoding of
3 channels (assuming ecncoding of the right ear) and
encoding of 6 channels.

mines when a source is active. A transition between states
occurs on average every 1.5 s. Each time a source be-
comes active, a random position is chosen from the avail-
able BRIRs. The location of each speaker is constant until
the source becomes inactive (silent). Changing the source
activity is important because we want the recurrent layer
to learn the time-variant nature of source activity in real-
world settings. Note that we do not simulate gradually
moving sources, only sources ’jumping’ from location to
location. However, we have shown that with the appropri-
ate adaptation to the training data, the network is also able
to deal with those types of situations [21]. The training
set comprises BRIRs of 10 different rooms with differ-
ent dimensions and reverberation times (RT60). Spatially
diffuse but temporally uncorrelated noise is added with
SNRs uniformly ranging from 0 dB till 30 dB.

The same way of data generation is used to obtain the
test-set, but with speech signals from an entirely different
database, different BRIRs, and noise conditions.

5. RESULTS & DISCUSSION

To evaluate the effect of the codec on DoA estimation, the
test set is processed with/without LC3plus codec. Three
models are tested in this section.

5.1 CRNN Baseline

The performance of CRNN in the baseline condition (no
codec applied to any channel, full-bandwidth data ex-

change) is shown in Fig.4 and contrasted, simultaneously,
with the two data-exchange models previously described,
employing the LC3plus codec. The legend shows the
conditions of different SNRs (marker shapes), source-to-
array distances (marker sizes), and the number of sources
(marker color). Each marker represents one of the cor-
responding conditions. In both subplots, the x-axis rep-
resents the localisation accuracies of the baseline. The
generally high accuracy scores on this axis confirms our
hypothesis that CRNN, in general, works well also for
binaural multi-source localisation and, thus, forms a good
baseline. Further, the effect of the SNR on the localisation
accuracy is significant: the accuracies in noiseless condi-
tions are generally higher than at lower SNRs. The y-axis
in the subplots represents the test condition with encoding
of 3 channels and 6 channels respectively. All the data
points are located under the main diagonal, which indi-
cates that LC3plus degrades the localisation performance.
This is not surprising since the encoded signals cause a
mismatch between the training and test setups.

5.2 CRNN trained with codec in loop

Two other models with encoding are training for the com-
parison: 1) CRNN trained with encoding of 3 channels
(CRNN 3cha), and 2) CRNN trained with encoding of 6
channels (CRNN 6cha). We compare both models with
the baseline that was tested without codec to analyse the
influence of the LC3plus codec.

The evaluation results are in Fig.5. The x-axis in both
subplots is the baseline tested without codec. In the left
subplot, the y-axis is the CRNN 3cha tested with encod-
ing of 3 channels. In the right subplot, the y-axis is the
CRNN 6cha tested with encoding of 6 channels. It shows
the same tendency in both subplots that the localisation
accuracies remain approximately the same in all tested
conditions, which proves that DoA information is fully re-
covered by training with the encoded signal. Surprisingly,
in noisy conditions of both subplots, especially SNR = 5
dB, the performance is even improved by training with the
encoded signal. When there is no noise, the performance
slightly degrades. Since LC3plus brings distortion in sig-
nal, these results suggest that training with such encoding
may improve the robustness to other kinds of distortions
such as noise.

There is no significant difference observed by com-
paring encoding of 3 channels and 6 channels. The DoA
information is preserved in both cases.
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Figure 4. The localisation accuracies(%) of CRNN baseline in different conditions are indicated in the figure.
The x-axis in both subplots is the CRNN baseline tested with unencoded test set. The y-axis in the left and right
subplot is the CRNN baseline tested with 3-channel encoded data and 6-channel encoded data respectively.
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Figure 5. The localisation accuracies(%) of CRNN 3cha and CRNN 6cha are indicated in the figure. The
x-axis in both subplots is CRNN baseline. The y-axis in the left subplot is CRNN 3cha and the y-axis in the
right subplot is CRNN 6cha. Note that all the models are tested with corresponding testing conditions.

5.3 Fine-tuning of different codec bitrates

To further improve the model robustness of different en-
coding bitrates, CRNN 3cha and CRNN 6cha, which is
exclusively trained for 32 kbps, are fine-tuned with the
training set encoded with different bitrates: 16, 32, and
64 kbps. Considering the page limit, we take the results
of CRNN 3cha as an example in Fig.6. The x-axis in
all subplots is CRNN 3cha and the y-axis are fine-tuned
CRNN 3cha, which are tested with the encoding of 64

kbps, 32 kbps, and 16 kbps respectively.

It is observed that, CRNN 3cha shows a promising
generalization on 16 kbps and 64 kbps signals, which
means though training with specific bitrate, it still gener-
alise between different bitrates. With further fine-tuning,
most of the markers in Fig.6 are located above the main
diagonal. Also, in the higher SNR scenario, for example
5dB, the improvement is more obvious with fine-tuning. It
is proved that fine-tuning among different bitrates helps to
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Figure 6. The localisation accuracies(%) of CRNN baseline and CRNN 3cha before and after fine-tuning are
indicated in the figure. The x-axis in all subplots is model before fine-tuning and y-axis is model after fine-
tuning. Note that the models before fine-tunning is trained with 32 kbps encoding and the fine-tuning includes
the bitrates of 16, 32, and 64 kbps.

improve the localisation accuracy, since it brings more va-
riety of distortion in training. For the specifically trained
bitrate 32 kbps (in the middel subplot), there is no signifi-
cant performance degradation observed though the model
is generalized to different bitrates. Especially when test-
ing with encoding of 16 kbps (in the right subplot), fine-
tuning improved the accuracies in all tested conditions.

6. CONCLUSION

A binaural sound source localisation method CRNN is
presented in this paper. The BRIRs of the utilised BTE
array are generated with HD-HRTFs recorded in differ-
ent rooms, whereby the head effect is considered during
DoA estimation. The CRNN shows high accuracies with
concurrent sources in noisy conditions, which is consid-
ered as the baseline to explore the influence of LC3plus
codec. Two kinds of encoding methods corresponding
to the practical application are considered: encoding of
3 channels and encoding of 6 channels. Based on evalu-
ation results, the conclusion is made that codec process-
ing indeed affects the DOA information, but can still be
perfectly recovered by CRNN by training with encoded
signals, even bringing robustness in noisy conditions. It is
also proved that the models trained with encoding data are

robust to different bitrates, which brings a wide possibil-
ity of utilizing encoding for binaural localisation. Further
work includes using feature-level data exchange instead
of audio exchange, based on the model presented in [22],
which might lower the data rate even further.
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