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ABSTRACT

Deep learning algorithms are increasingly used in many
fields outside of artificial intelligence, including bioacous-
tics. Among many possible applications of deep learning
to bioacoustics, typical ones include call identification,
species recognition, and acoustic features classification.
However, the implementation of deep learning algorithms
is limited as bioacoustic databases are often rather small
and thus lack sufficient data to properly train neural net-
works. Improper training leads to problems like overfit-
ting and lack of generalization which, in turn, affect per-
formance. Here, we address the most common challenges
that bioacousticians face when training a deep neural net-
work in a classification task. We present and explain use-
ful techniques such as pre-training and data augmentation,
and emphasize applying them in an efficient and meaning-
ful way to not alter distinctive features or specific stimu-
lus features such as fundamental frequency. We present
an example application of these techniques in a classifi-
cation task, where we perform species identification in a
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database of phylogenetically distant mammals, each with
a limited number of calls. We aimed at developing a gen-
eral framework on how to apply deep learning algorithms
to small- and larger-scale bioacoustic datasets.
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1. INTRODUCTION

Within computational bioacoustics, the use of deep learn-
ing (DL) has been of particular interest to researchers, as
it has allowed to better deal with a diverse array of prob-
lems. A well-known application of DL in bioacoustics
is animal audio classification, typically within the same
taxonomic class, such as in the BirdCLEF challenge [1].
Other studies explored the classification among individual
animals within the same species, sex, strains, or behav-
ioral states [2].

There is a wide array of techniques and methods
within DL that can be used in bioacoustics [2]. Although
early approaches relied on the use of basic multilayer per-
ceptron architectures, taking acoustic features as input [3],
they have been greatly outperformed by Convolutional
Neural Networks (CNN). In a CNN approach, raw acous-
tical data (or lightly processed data) can be taken as in-
put in the shape of time-frequency spectrogram represen-
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tations [4].
However, DL approaches rely heavily on data avail-

ability as a lack of training data makes it difficult to train
a deep learning network [5]. On the one hand, machine
learning frameworks have been established to deal with
small unbalanced datasets, with applications in bioacous-
tics [6]. On the other hand, methods like data augmen-
tation [7] and transfer learning/pre-training have been de-
veloped to increase the performance of algorithms with
limited data. Transfer learning (TL) in particular has been
used for bioacoustical classification of whale calls [8]
among other species.

Although combining both approaches for small
datasets has been considered previously [4], it is not a
common approach, specially with rather small datasets.
The objective of this study was to exploit a typical pre-
trained network [9] to perform a bio-acoustical classifica-
tion of different animal calls in a small dataset.

2. METHODS

2.1 Dataset

In this study, a dataset previously used in cross-taxa
emotion recognition studies, was used [10, 11]. The
dataset consists of 192 vocalizations from 4 different
species: human infant, dog (Canis familiaris), chim-
panzee (Pan troglodytes), and tree shrew (Tupaia be-
langeri, all recorded in natural contexts. The vocaliza-
tions were divided into two categories (affiliative and non-
affiliative/agonistic), with 24 vocalizations per context
category, each containing either a single call or a sequence
of 5 to 8 calls. The study was conducted with the approval
of the University of Leipzig’s ethics committee and in ac-
cordance with the Declaration of Helsinki. Specific details
on the dataset can be found in the original paper [10].

For the purpose of the present study, the agonistic
context category was simply labeled as the ”negative”
condition, whereas the affiliative context category was la-
beled as ”positive” condition.

2.2 Deep Neural Network Architecture

In this study, the VGG16 convolutional neural network
proposed by Sumonyan and Zisserman was applied [9].
The VGG16 network is composed of 16 layers (13 con-
volutional layers, 2 dense layers and 1 softmax layer),
with maxpooling layers in between to avoid generaliza-
tion (e.g., can the model process new data and make cor-
rect predictions after getting trained). It can take fixed

size 224x244 RGB images as input, returning a class pre-
diction as output. This architecture gained popularity after
its performance in the ImageNet Challenge 2014 [12], but
given its good performance on datasets where labeled data
is limited, it has also been used successfully in bioacous-
tics tasks [8].

One of the advantages of using the VGG16 architec-
ture is that the pre-trained weights from the original Ima-
geNet classification task can be used in transfer learning
(TL) approaches. TL is a technique that uses a previously
trained network and re-trains it in a new task, using the
pre-trained weights for initializations.

TL can be used if the task for which it was pre-trained
is similar to the new one. This means that features, which
are already learned by the network, can be exploited in
the new task. Here, spectrograms were treated as images,
which the network was already trained on to classify. The
main advantage of TL is that it greatly reduces the amount
of data needed to achieve good classification accuracy.

2.3 Data Processing

In this study, each playback clip was converted into a spec-
trogram representation using Parselmouth [13], a Python
library that allows using algorithms and methods imple-
mented in Praat [14]. Praat is a speech analysis soft-
ware package widely used in phonetics and other linguis-
tics disciplines. In the current study we chose Praat as
standardized algorithms are already embedded. Spectro-
grams were computed using standard settings (window
length = 20 ms, 20 frames per window, 448 bins, Hann
window), and intensities in the spectrogram were repre-
sented in decibels by a greyscale. Details on the audio
pre-processing of audio clips can be found in the original
paper [10].

A data augmentation approach was used, where the
amount of data used to train the model was increased
based on available training data. Each audio segment
was manipulated using the Parselmouth library [13] that
allows using PRAAT to increase and decrease the pitch
by one octave. Also, noise was added to create a noisy
version of the original signal, with approximately 10% of
the total energy. Adding noise is a useful way to prevent
generalization. This yielded a total of 768 audio samples
for each species, from which 536 (70%) were used for re-
training. This was slightly less than the standard 80/20
proportion since the remaining 30% used for testing could
not be augmented. Therefore taking only 20% would have
resulted in an unacceptably small test set. For each retrain-
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ing process, 20 epochs were considered.
To further extend the analysis on these datasets and

taking advantage of the different species belonging to the
same category, we chose two complementary approaches.
First, we performed a leave-one-species-out approach,
where the network was trained with 3 of the species, us-
ing the data of the left-out species as a test set (LOO ap-
proach). The idea was to test the network with data that
were not used as input before but came from the same cat-
egory. Second, following a similar idea as the leave one
out, the network was re-trained with vocalizations of only
one species (OOS approach), and then its performance
was tested on the other 3 species separately. The idea be-
hind both approaches was to explore how features from
different species vocalizations affect the accuracy in the
affiliative and non-affiliative vocalization conditions.

3. RESULTS

First, we trained the VGG16 network with randomly ini-
tialized weights, i.e., without any TL approach. This
yielded a 44.45% of accuracy on the test set. This results
were not satisfactory, as insufficient data was used for
training the network. For the second experiment, we pro-
ceeded with the TL approach, by using the VGG16 archi-
tecture with weights pre-trained on ImageNet. After train-
ing, accuracy of 87.93% was obtained across all vocaliza-
tion types. For the third set of experiments, the leaving-
one-out (LOO) approach was evaluated in two conditions:
initializing first with random weights and then with the
pre-trained weights (i.e with and without a TL approach).
It can be noted without that TL, results were again un-
satisfactory. However, this time, only an increase in ac-
curacy was observed when testing on babies and chim-
panzees. For the fourth and final experiment, the VGG16
network was initialized with pre-trained weights and re-
trained with vocalizations from only one species (OOS).
Results from the third and fourth set of experiments are
shown in 1.

4. DISCUSSION

In the current study, we applied a deep learning approach
to investigate small datasets in a bioacoustic classification
task. Techniques like transfer learning and data augmen-
tation revealed a significant impact on the performance of
the classification algorithm, despite the limited size of the
available dataset. Successfully using a pre-trained net-
work that learned from natural images on spectrogram

Test Set
Approach Baby Dog Chimp. Tree Shrew
LOO (No TL) 49.45% 50.80% 51.24% 48.86%
LOO (With TL) 58,08% 45,83% 64,58% 43,75%
OOS - Baby - 37,50% 66,67% 22,92%
OOS - Dog 43,75% - 47,92% 41,67%
OOS - Chimp. 56,25% 45,83% - 31,25%
OOS - Tree Shrew 54,17% 50,00% 50,00% -

Table 1. Accuracy results for the ”Leave one out”
(LOO) and training with one species (OOS) ap-
proaches. For contrast, results without TL are also
shown for the LOO approach.

representations implies that similar features present in nat-
ural images (e.g. shapes, textures) are recognized in spec-
trograms. The relevance of this work for bioacoustics is
that we observed that pre-training transferred better be-
tween some species than others, hinting that phyloge-
netic closeness may predict how well pre-training trans-
fers. This idea can, in turn, be contrasted with human
perception.

The leave-one-species-out experiment can be useful
to gain insight on shared features among vocalizations
from different species. When leaving one species dataset
out, the classification for a specific sound category in
some species increased compared to the rest, and im-
plies that there is a level of feature sharing between vo-
calizations. Particularly, Table 1 shows that accuracy for
chimpanzee and baby vocalizations was higher than for
the other two species, suggesting possible acoustic fea-
ture sharing between the phylogenetically closer sets of
vocalizations. This can also be observed with the OOS
experiment (Table 1), where the accuracy for the classifi-
cation of chimpanzee vocalizations was 66% when trained
with the baby datasets, and vice-versa an accuracy of 56%
was obtained. In contrast, for the rest of the species, ac-
curacy never surpassed 50%. In particular, the results for
the tree shrew were overall worse, and differentiation be-
tween calls of other species was not possible (the 5̃0% of
accuracy corresponds to classifying all calls as a single
category).

However, It is worth noting that with limited data
these interpretations could be rushed. Nonetheless, the
current results complement the ones obtained in the orig-
inal study by Scheumann et al., where vocalizations were
used to distinguish the influence of familiarity and phy-
logeny on voice-induced emotional perceptions in humans
[10]. Thus, the results obtained through a deep learning
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approach complement human perception results. More-
over, a similar study performed on bird vocalizations also
suggests that accuracy in classification drops with phylo-
genetical distance [15]. Important is that deep learning al-
gorithms only look into raw data, neglecting the influence
of any other human-related bias (e.g., cognitive). There-
fore comparing human and machine classifications may
provide meaningful insight into the mechanisms that un-
derlie the classification of animal vocalizations.
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