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ABSTRACT* 

Drummers attach different kinds of material on their 
drumheads to either increase damping or to tune them and 
adjust the relationships of sound partials. The former is a 
common practice for drummers, while the latter may be 
found in percussion instruments of various ethnic traditions, 
such as the Myanmar pat wain drum circle or the Indian 
tabla. A Finite-Difference Time Domain (FDTD) physical 
model of a drumhead was used to compute more than 2000 
sounds simulating membrane vibration, which was adjusted 
by adding varied amounts of paste, distributed in different 
surface patterns. These sounds were analysed using Self-
Organizing Maps (SOMs) as well as a Convolutional 
Neural Network (CNN). The SOMs were used to cluster  
the partial relationships of the generated sounds. It is 
demonstrated that different paste patterns correspond  
to different clusters. Furthermore, the CNN was trained to 
identify the damping approach, yielding an accuracy of 
94% for paste pattern classification and a mean error of +/-
11% for the estimation of membrane mass increase.  
These tools can be used to identify damping patterns used 
in historical drum recordings or as suggestions to 
percussionists for deriving a desired sound texture. 
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1. INTRODUCTION 

Circular membranes, produce unpitched sounds as their 
vibrational modes are not harmonically related. It is well 
known [1] that the eigenfrequencies of an ideal circular 
membrane are provided by Eqn. (1). 

                              (1) 

fmn denotes the frequency of the mode corresponding to m 
nodal diameters and n radial nodes, R denotes the radius of 
the membrane, T the tension applied, μ its mass distribution 
and Jmn(kr) denotes the n-th root of an m-order Bessel 
function. Therefore, the fundamental frequency is 
determined by the radius, the mass density and the Tension 
applied on the membrane, while the relationship of 
overtones has a constant non-harmonic relationship. 
Realistic drumheads exhibit an overtone structure that has 
many deviations to that of the ideal circular membrane. This 
is commonly attributed to the vibration of the shell, the air 
cavity within the shell, as well as the fact that mass and 
tension are not uniformly distributed throughout the surface. 
Different sounds may be produced by varying the radius R, 
the distribution of tension T(x, y), the distribution of mass 
density μ(x, y), as well as by the hitting point that excites 
membrane vibration. Changing these attributes does not 
only affect the frequency of the fundamental, as shown on 
equation (1), but also the entire overtone spectrum in terms 
of frequency and amplitude relationships, as well as the 
decay rate of different partials.  
Percussionists employ different strategies to adjust the 
sound texture of their drums. As shown on Fig. 1, there are 
several types of drum dampeners available in the market, 
such as damping pads covering the entire area of the 
membrane, drum clips, adhesive gels, gaffer tapes and 
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muffle rings to name a few. There are no standard 
instructions on how drums are damped, so the choice of 
which dampers to use and how to position them on the 
instrument is entirely up to the performer. The general idea 
is that a dampener will reduce the energy and duration of 
the modes that have antinodes at the membrane location of 
the dampener [2]. So circular dampeners aim at damping 
angular modes, small rectangular pads aim at damping 
diametric modes, while damping pads covering the entire 
membrane area provide volume reduction, without 
considerable changes of the sound texture. 
 

 

Figure 1. Commercial drum dampeners including 
damping pads, drum clips, muffle rings and 
adhesive gels. 
 
As an alternative to membrane damping, modifying the 
distribution of mass on the drumhead is often used for 
tuning an instrument, as is the case of the Myanmar pat 
wain instrument. Pat wain is a drum circle consisting of 20 
or 21 pitched drums, which are tuned by applying a paste 
called pa sa. Pa sa is a mixture of rice and ashes. When 
cooked, the rice varieties of Southeast and East Asia 
become particularly sticky, the so-called sticky rice, which 
means that they have a high amount of viscoelasticity. To 
tune the pat wain drums, paste is applied at the center of the 
instrument. This decreases the frequency of the 
fundamental mode, as it applies additional mass without 
any adjustment to tension. Then, the tuner redistributes the 
amount of paste to control the overtone spectrum by 
checking timbre and comparing it with the other drums of 
the instrument [3]. 

The rest of this paper is structured as follows. The next 
section presents our efforts for assembling a sound dataset 
corresponding to the vibrations produced by a drumhead of 
predefined geometry, which is tuned by varying the amount 
of paste applied and the paste distribution pattern. Then, 
section 3 presents a methodology for investigating the effect 
of damping patterns on the spectral envelop of the 
corresponding sounds. A SOM is used to cluster sounds 
according to the relationships of spectral overtones. Section 
4 presents a CNN which was trained with the dataset, to 
estimate the amount of added mass due to paste and to 
recognize the distribution pattern from a given sound signal.  
Finally, section 5 presents some concluding remarks of our 
work, as well as our ideas for further investigation.  

2. SOUND DATASET 

To calculate the sound of a membrane when damping or 
tuning material is applied, a FDTD algorithm was 
implemented as the numerical solution of the wave equation 
describing the vibration of the membrane. FDTD models 
have been previously used for complete geometries of a 
guitar, a violin, and several other instruments [4][5]. This 
section provides an overview of the FDTD model that was 
implemented to compute sound signals of a circular 
membrane, as well as the modification of the model to 
generate sounds when tuning paste is applied on the surface 
of the drumhead. 

2.1 FDTD Model 

The FDTD model used in this study provides a numerical 
solution of the wave equation of the circular membrane, 
provided by Eqn. (2). 
 

                  (2) 
 
The function u(x, y, t)  represents the instant displacement 
of a point (x, y) at time t, which is perpendicular to the 
surface of the membrane. T is the tension of the membrane, 
μ(x, y) = m(x, y)/A denotes the area density, i.e. mass over 
membrane surface A, and D is a damping constant. To 
derive a numerical solution for Eqn. (2), the membrane is 
modelled as a finite number of rectangular cell grids for 
which Δx = Δy = h, as shown in Fig. 2. The fundamental 
time step is defined as Δt = k. The membrane assumes 
boundary conditions u(xb , yb, t) = 0 for all points xb , yb 
around the circumference of the membrane and initial 
conditions u(x, y, 0) = 0 for all points except from the 
striking point of the membrane, for which u(xp , yp, 0) = 1.  
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The Newton–Störmer–Verlet, also known as leapfrog 
algorithm [6] is used to derive the displacement of every 
grid cell at every time step as described in [3]. Finally, a 
radiated sound signal is computed by assuming a 
microphone at distance d above the center of the membrane. 
This computation integrates the displacements at 
microphone position with a time delay and an attenuation 
determined by the virtual microphone position above the 
drumhead. Thereby the attenuation d/r(x,y) with r(x,y) the 
distances between the respective points on the membrane 
and the microphone, and a delay r(x,y)/c is used, with c 
denoting the speed of sound in the air. 
 

 

Figure 2. The cell grid of the circular membrane. 
 

2.2 Membrane geometry and added paste 

To generate a dataset of sound signals, the parameters 
concerning the geometry and the material of the membrane 
were kept constant. Paste was described in terms of the 
amount of paste mass applied on the membrane, as well as 
in terms of its distribution on the membrane surface, which 
followed seven patterns, inspired by common drum tuning 
and/or damping strategies. These paste patterns are 
illustrated in Fig. 3 and are indexed as: 1-diameter, 2-radius, 
3-cross, 4-disc, 5-ring and 6-point. An extra pattern, i.e., 0-
no_paste was included to account for the ‘bare’ membrane, 
for which different sounds were generated by varying the 
membrane thickness. 
The ‘bare’ membrane was modeled having a thickness 
value of 3 mm, a radius of 0.25 m and a volume density of 
300 kgr/m3. These values describe a membrane having a 
total mass of 177 gr. The tension of the membrane was kept 
constant at T=800 Nt, the point of excitation was fixed on 
the center of the membrane, the virtual microphone position 
was set at distance d=0.7 m above the center, the damping 

factor was set at a value of D=0.9999 and the sound of 
speed was set as c=343 m/sec.  
The produced dataset comprised 2331 sound samples, 
corresponding to approximately 333 sounds per pattern. For 
each pattern, different sounds were produced by adjusting 
the geometry of the area having paste, as well as the 
percentage of mass increase due to paste for the grid points 
for which paste was applied. Specifically, for radial patters 
(i.e., diameter, radius, cross) different sounds were 
computed by varying the line width and paste percentage. 
For the disc pattern, the radius of the disc and the paste 
percentage were adjusted, while for the ring pattern the 
outer radius, the width of the ring and the percentage of 
paste were varied. Finally, for the point pattern, 
representing an adhesive pad on the membrane, four grid 
points were chosen having different distances from the 
center of the membrane. For each of these the radial width 
and the paste percentage were varied to provide 332 
combinations for the point pattern.  
To generate the audio dataset, the FDTD model was 
implemented using the CUDA architecture on an Intel i7-
4790k 4GHz/32GB RAM computer system using the 
NVIDIA GeForce GTX 970 4GB GPU on Windows 7. A 
uniform, square grid of 104x104=10816 nodal points was 
used to discretize the wave equation. The computation time 
was estimated around 3-4 seconds for the generation of 1sec 
of monophonic audio at a sampling rate of 96 kHz. The 
audio signals were resampled to the sampling rate 22050 
Hz and stored in wav format. Ground truth annotations 
accounted for the label of the paste pattern as well as the 
amount of added mass in kg, as computed for the cells 
where paste was applied.  
 

 

Figure 3. The paste distribution patterns simulated by 
the FDTD model. 
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3. DATA INVESTIGATION 

Different paste patterns alter the sound spectrum with 
respect to the frequency relationships of the modal 
frequencies. As an example, Fig. 4 presents the FFT spectra 
for no added paste (pattern-0) and for paste distributed 
according to the cross pattern (pattern-3). By peak-picking 
the FFT spectra, it was found that for pattern-0 the 
fundamental frequency is 40Hz and the frequency ratios of 
the overtones to the fundamental are [1, 2.31, 3.62, 4.93, 
6.24, 7.53, 8.84, 10.13]. For pattern-3 the estimated 
fundamental was at 30 Hz, and the frequency ratios were [1, 
2.26, 4.06, 4.50, 5.53, 5.77, 6.67, 7.07]. 
The fundamental of 40 Hz for pattern-0 agrees with Eqn. 
(1). Moreover, the second and third partial have a frequency 
relationship to the fundamental that corresponds to mode 
four (0,2) and mode nine (0, 3). Note that due to the 
arbitrary choice of using the center of the membrane as the 
hitting point of the vibration, modes two, three and five up 
to eight have not been excited because they present nodal 
points on the center of the membrane. The fundamental of 
30Hz for pattern-3 suggests a total mass increase by a factor 
of 2.25. This can be estimated by considering Eqn. (1) and 
the fundamental of the plain (no-paste) membrane. 
Moreover, the spectral envelopes of the two signals are 
significantly different, both in terms of frequency as well as 
in terms of amplitude relationships. 
 

 

Figure 4. FFT spectra of two sounds corresponding to 
the bare membrane (no paste) and pattern 3 (cross) 
pattern. 

3.1 SOM clusters 

To investigate whether the relationships of spectral 
overtones and their amplitudes can be clustered in 
agreement with paste patterns, a Kohonen or self-
organizing map (SOM) [7] was calculated from (a) the 
frequency ratios and (b) the amplitude ratios of partials for 
all sounds in the dataset.  
A SOM reduces the multidimensional input data space into 
a two-dimensional map of size N x N. Each neuron i,j = 
1,2,3,…N on the map is a vector Si,j ={si,j1, si,j2, si,j3,… si,jM}, 
where M is also the length of the feature vectors Xk ={xk1, 
xk2, xk3,… xkM} used for training the map and  k=1,2,3,…R 
with the R the number of training vectors. Initially, the Si,j  

are chosen randomly with normalized random vectors. Both 
neurons Si,j  as well as the feature vector values Xk are 
normalized. The map is trained with T iterations, where 
each iteration is training of all feature vectors of the map. 
Each feature vector Xk is trained to the map by first 
calculating the distances di,j  = < Si,j , Xk > between each 
neuron and the respective feature vector k, where <,> 
denotes the scalar product. The neuron i,j with minimum 
distance min(di,j) is detected and this neuron, as well as its 
neighboring neurons, is changed to St+1i,j = Sti,j +ε h(Sti,j - 
Xk), where t is the training iteration number. Here, ε is the 
learning rate and h is a function determining the learning 
strength between the best-match neuron and its neighbors. 
In this study, a Mexican hat function was used. 
The map is expected to unfold, i.e., converge, at iteration 
time t into regions of similar neurons, i.e., into clusters. 
These clusters often have boundaries to neighboring 
clusters, where neighboring map neurons change 
considerably. To estimate clusters, a u-matrix is calculated 
from distances between neurons, where the maximum 
distance is one and similarity is zero. Each neuron is 
assigned a u-matrix number according to its distance to 
neighboring neurons, again using the scalar product and the 
Mexican hat function. In the plots shown in this paper, the 
background color shows the u-matrix, in which dark colors 
represent similarity and bright colors strong dissimilarities. 
As can be seen in Fig. 5 and Fig. 6 below, larger regions of 
blue represent clusters and yellow or light green ridges 
show boundaries between the clusters. The trained map is 
then used for detecting the best matches of each input 
vector again calculating the distances di,j   as a scalar product 
and choosing the neuron with minimum distance as best 
match.   
The Apollon and Computational Phonogram Archiving 
(COMSAR) frameworks [8-12] were used to train and 
analyze the SOMs. For each simulated drum sound, the first 
16 partials were detected by pick-peaking the FFT spectra 
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and the ratio of partial frequencies to the frequency of the 
fundamental were calculated and used as the feature vector 
for training. To account for the amplitude of different 
partials, the absolute amplitudes of the first 16 partials were 
used as training vectors. For each feature vector set, a SOM 
grid of 55 x 55 neurons was chosen and trained for 1000 
training epochs. After training, all stimuli were best fitted 
into the trained SOM. 
Fig. 5 shows the trained SOM and fitted sounds according 
to the frequency ratios of partials. Note that due to the 
overlap of fitted sounds on single neurons, some of the 
2331 sounds are not represented as separate dots. The 
background is the u-matrix, displaying similarity between 
neighboring trained neuron weights. Dark blue regions 
represent similar regions, and light-yellow displays strong 
dissimilarity. The patterns are marked with colors; black is 
no paste, yellow, red, and magenta represent line patterns, 
i.e., diameter, radius and cross respectively, while cyan, 
green, and blue display circular patterns disc, ring and point. 
At first sight, the patterns cluster quite well, pointing to 
distinct partial relations within patterns. In the background 
neuron-similarity plot, a strong yellow ridge can be seen, 
distinguishing between the circular patterns ring (green) and 
disc (cyan) as well as the no-paste pattern (black), from the 
line patterns diameter(yellow), cross (magenta), radius (red) 
and the point pattern (black). The point pattern is on the side 
of line patterns mixed with the radius patterns, most likely 
because they are both asymmetric with respect to the 
membrane mid-point over all diameters. Besides these two 
groups, several subclusters appear, e.g., the cross (magenta) 
and the diameter pattern (yellow) subclusters at the left and 
the distribution of no-paste (black) pattern over several 
fields within disc (cyan) and ring (green) pattern clusters. 
Interestingly, the ring pattern is split into two fields, 
possibly related to the percentage of paste coverage of the 
membrane surface.  
It is important to note the distribution of the no paste 
pattern. This is surprising at first, as the no-paste case is 
expected to have the identical frequency relationships. As 
the different sounds of pattern-0 correspond to increased 
thickness compared to the reference membrane, it appears 
that the decrease of f0, due to the increase of the total mass, 
introduces computational artifacts in peak-picking the 
higher order partials. As depicted by the top spectrum of 
Fig. 4, a second peak appears above the ninth overtone, 
which corresponds to a separate vibrational mode of a very 
close frequency. The peak-picking algorithm has a 
threshold related to the distance between successive peaks, 
therefore when identifying peaks, it appears that only one of 
these ‘double’ modes is selected. The reduced fundamental 
reduces the distances between successive modes therefore 

choosing either the first or the second peak as the next 
partial. Although these artifacts may be small, the SOM 
differentiates some of these sounds. Nevertheless, a closer 
look, reveals that there are fewer black dots compared to 
any other color, approximately 50-60 out of 335 no-paste 
sounds, suggesting that there is significant overlap. 
 

 

Figure 5. Trained SOM and fitted sounds 
according to the frequency ratios of their partials.  
Dark background colors reveal similarities, and 
light colors reveal strong neuron similarities.  
 
Fig. 6 demonstrates the SOM fitted by training on the 
absolute amplitude values of the first sixteen partials. In this 
case, there is no clear ridge in the neuron similarity matrix 
of the background plot. However, the basic relationships are 
similar: line patterns diameter (yellow) and radius (red) are 
again close, asymmetric patterns point (blue) and radius 
(red) are combined, although to a lesser extent with a new 
blue cluster at the upper right corner. The circular disc 
pattern (cyan) and the no-paste pattern (black) are again 
combined. In this Figure, omitting paste in pattern-0 yields 
more instances of black dots compared to Figure 5, as the 
different thickness values results in different amplitude 
values but similar frequency relationships.  
Yet a third SOM was calculated, combining the partial 
relationships with the amplitude values. This third SOM 
yields only slight differences compared to Fig. 5 and Fig. 6 
and therefore has been omitted. 
Overall, the SOM results show that using the patterns 
suggested in this paper leads to distinct drum sounds found 
in the distinct clusters. Asymmetric patterns are distinct 
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from line patterns, again distinct from circular symmetric 
patterns.  
 

 

Figure 6. Trained SOM and fitted sounds for the 
amplitude values of the first sixteen partials. The 
clear separation between line and circular patterns 
is no longer present, although many clusters are 
similar to the clustering of frequency ratios. 
 
The disc (cyan) pattern is close to the case of no-paste 
(black), therefore suggested for slight or imperceptible 
change of partial relationships. So, drummers only seeking 
to damp their membranes and not change the basic partial 
relations find their best choice in the circular disc pattern. 

4. CNN INFERENCE 

A deep neural network was implemented to identify the 
damping strategy for deriving a desired sound texture. 
Dataset sounds were provided as input to the network, 
which was trained to recognize the paste pattern as well as 
to estimate mass increase of the membrane owing to paste, 
thus accounting for a classification and a regression task 
respectively.  
A multi-output network [13] was implemented to drive the 
training process towards making a combined inference for 
paste pattern and mass increase.  The fact that each SOM 
cluster spans a considerable area, as well as the fact that 
clusters are not isolated from each other, reveal that pattern 
and mass increase have a combined effect on the resulting 
sound texture, which was the reason for opting for a multi-

output network instead of separately training a classification 
and a regression task. 

4.1 Network architecture 

The architecture of the final multi-output CNN is shown  
on Fig. 7. It comprises multiple layers, including 
convolutional, pooling, dense, and flatten layers. The input 
layer accepts 1 sec of an audio signal at the sampling rate of 
22050 Hz.  
 

 

Figure 7. The architecture of the CNN used for 
inferring paste pattern and mass increase. 
 
The output of the input layer is driven to a 1D 
Convolutional layer of 64 filters and a kernel size of 3, and 
a Max Pooling layer with a pool size of 2, followed by a 
second convolutional layer of 128 filters and a pooling layer 
having a pool size of 2. The output of the second pooling 
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layer is flattened and fetched to a dense layer of 512 units, 
which uses ReLU as the activation function. The network 
then splits in two separate outputs, one for classification and 
one for regression. The classification output is a Dense 
layer of 7 units and uses Softmax as the activation function 
and outputs the class corresponding to the paste pattern. The 
regression output is a Dense layer with one regression unit 
and a linear activation function, which outputs the predicted 
amount of paste. 
The model used the Adaptive Moment Estimation (ADAM) 
algorithm for optimization, and the cost functions were 
based on Categorical Cross-Entropy (CCE) loss for 
multiclass classification, Mean Squared Error (MSE) for 
regression. 

4.2 Network training 

To infer drumhead tuning the dataset was split into train and 
test sets in an analogy of 67% (1561 samples) to 33% (770 
samples) respectively. The CNN model was implemented 
in Python using TensorFlow and Keras on the Google 
Colaboratory environment, which made use of a Tesla T4 
GPU. 
Training used a batch size of 20 samples and was stopped 
after 220 training iterations (epochs). To assess the 
performance of the model and prevent overfitting, 5-fold 
cross-validation was employed. 

4.3 Results 

The classification accuracy reached a performance of 
94.03% for the test set, as detailed by the confusion matrix 
of Fig. 8. 
 

 

Figure 8: The confusion matrix of paste pattern 
classification in the test set. 

 
The performance of the regression task was evaluated using 
the values of Mean Absolute Error (MAE) and Mean 
Squared Error (MSE). Table 1 provides the values of these 
measures per paste pattern.  It appears that the added mass 
was estimated with an improved precision for the patterns 
Diameter, Disk and Point, while the weighted average of 
0.01889 for MAE demonstrates an overall error of +/-
10.67% compared to the total mass of the membrane 
(177gr). 
 
The high performance of the classification task may suggest 
that the overtone spectrum, i.e., frequency and amplitude 
relationships is dominated by the way mass is distributed on 
the surface, rather than the amount of mass used, which 
predominantly affects the energy and the frequency of the 
fundamental mode of vibration. This is in agreement with 
relevant studies on musical acoustics ([2] and [3]), as well 
as with the claims of professional percussionists. To 
confirm this assumption, further computational experiments 
are being performed. These involve the generation of more 
sounds, as well as the comparison of the performance of 
different neural network architectures to account for the 
variability of information encoded by deep learning 
architectures [14]. 
 

Table 1. The performance of the regression task per 
paste pattern in the test set. 

Pattern # MAE MSE 
0-No Paste 101 0.02627 0.00162 
1-Diameter 103 0.00754 0.00010 
2-Radius 115 0.00406 0.00003 
3-Cross 108 0.01792 0.00062 
4-Disk 116 0.04699 0.00601 
5-Ring 117 0.02363 0.00124 
6-Point 110 0.00481 0.00004 
Sum or W. A. 770 0.01889 0.01417 

 

5. CONCLUSIONS 

This work attempts to provide insight into drumhead tuning 
and damping techniques often used by percussionists by 
repeatedly altering tension or mass distribution on their 
drumheads till they achieve a satisfactory timbre. The 
methodology includes the computation of a sound dataset of 
more than 2000 sounds of a physical model of a membrane 
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having pre-defined geometric characteristics and generating 
different sounds by altering mass distribution according to 
seven patterns. The variation of mass distribution has been 
inspired by the Myanmar pat wain instrument, which is 
tuned by adding paste on the surface of the drumhead.  
Self-Organizing Maps were used as a visualization tool to 
reveal two dimensional similarities of the relationships of 
the first sixteen spectral overtones. It is shown that each 
pattern corresponds to a different cluster of frequency 
relationships, while different patterns lead to highly 
dissimilar patterns. As revealed by the SOMs, the disk 
pattern leads to similar vibrations of the membrane when no 
damping is applied, suggesting that it does not introduce 
significant changes in the spectral envelop. In contrast, 
asymmetric patterns are distinct from line patterns, again 
distinct from circular symmetric patterns.  
As a further step, a deep neural network was trained to infer 
the damping approach when provided with an input sound. 
The network produces two outputs suggesting a paste 
pattern and an amount of extra mass to apply on the 
drumhead to derive the given sound. The paste pattern 
inference task has a very high accuracy of 94% again 
confirming that a specific paste pattern results in highly 
correlated sounds.  
A limitation of this study concerns the fact that the sounds 
used for SOM clustering and CNN inference have been 
derived by purely computational methods. Future 
investigations will focus on applying this methodology on 
realistic sounds that will include a mixture of recorded 
drumhead sounds and computed sounds derived by physical 
models and data augmentation techniques. Moreover, a 
perceptual evaluation of the similarity of a desired sound 
texture to the sound texture provided by the physical model 
suggested by the CNN, while further enhance the validity of 
the target application, namely suggesting damping 
techniques to percussionists. 
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