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ABSTRACT

Limited accessibility often restricts the possibility of di-
rectly measuring the true acoustic properties of existing
components. In that context, this paper investigates a hy-
brid approach for the inverse identification of the acous-
tic impedance of components, by combining microphone
measurements with highly efficient acoustic Boundary
Element Method (BEM) models. The modeling effi-
ciency, achieved through a parametric model order reduc-
tion (pMOR) technique for BEM models [1], facilitates
the fast transition among models with different impedance
values and thus, greatly accelerates the inverse identifica-
tion scheme. The effectiveness of the proposed technique
is demonstrated with the well-studied example of the KU
Leuven soundbox test setup [2].

Keywords: BEM, parametric model order reduction, in
situ impedance characterization.

1. INTRODUCTION

Being a system level property, obtaining the acoustic be-
havior of components demands modeling the entire sys-
tem to obtain a trustworthy simulation. However, this
can result in a significant computational cost, which,
particularly in case of inverse identification strategies,
might become unacceptable. To enhance the efficiency of
acoustic analyses, various Model Order Reduction (MOR)
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techniques have been developed accelerating for exam-
ple vibro-acoustic Finite Element (FE) [3] simulations in
[4, 5], or acoustic Boundary Element Method (BEM) [6]
analyses in [7, 8]. Although such techniques are effec-
tive in solving acoustic systems with a single parameter,
they are inadequate for dealing with systems containing
multiple parameters, such as material parametrizations.
Enabling model order reduction of multiparametric sys-
tems, several parametric MOR (pMOR) strategies have
been developed within the field of acoustics, accommo-
dating pMOR of FE models including topology [9], ma-
terial [10] and boundary conditions parametrizations [11].
Respectively, in BE analyses only recently a technique for
parametric MOR has been proposed, allowing for mate-
rial, source position, and shape parametrizations [1].

This paper employs this recently developed technique
for the inverse identification of the acoustic impedance of
a porous layer placed within the KU Leuven soundbox.
The approach of this paper follows a similar logic to the
one presented within [12]. However, employing a para-
metric reduced order model as presented in [1] results in
a more efficient approach allowing not only multiple iter-
ations across different acoustic impedance values but also
inverse identification for multiple frequencies, thus en-
abling complicated impedance functions. The paper ex-
ploits the reduced order model constructed in [13] and
employs an inverse optimization scheme to retrieve the
acoustic impedance of an acoustic lining patch, which is
considered to be unknown. The paper starts by introduc-
ing the impedance parametrization in BEM systems and
then briefly presents the parametric model order reduction
strategy introduced in [1]. Finally, after introducing a ba-
sic inverse approach for the impedance identification the
performance of the approach is investigated based on the
virtual experiment of an interior acoustic cavity.
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2. IMPEDANCE PARAMETRIZATION IN BEM
SYSTEMS

Inserting a piecewise constant approximation of the sound
pressure ψ(x) and the boundary admittance Y (x) over the
boundary into the system resulting from a discretization
of the Helmholtz equation employing Boundary Elements
[6] results in(

H(ω)−G(ω)Y(ω)
)
x(ω) = b(ω). (1)

In (1) H,G : Ψ → CN×N represent the contributions
of each element to the double and single layer poten-
tials and ω ∈ Ψ is the angular velocity defined on a set
Ψ := [ωmin, ωmax] by ω := 2πf with f representing the
frequency. Additionally, Y : Ψ → CN×N is a diagonal
admittance matrix, with each diagonal entry representing
the respective admittance value of each element. Since
typically several elements share identical boundary con-
ditions, the discretization nodes can be grouped according
to their admittance value in Ξ groups. Inserting also the
necessary boundary conditions in equation (1) it is rewrit-
ten as

(A(ω) +

Ξ∑
j=1

yjBj(ω))x(ω,p) = b(ω), (2)

where yj is the respective admittance value of the jth

group, Bj : Ψ → CN×N represents the contributions of
the impedance boundary condition on the system matrix
A : Ψ → CN×N and b : Ψ → CN . As indicated in equa-
tion (2), the admittance value of each group yj constitutes
an affine parametrization of the system. In that way, hav-
ing constructed matrices A(ω) and Bj(ω), it is possible
to compute the acoustic response for varying admittance
on the Ξ lining patches. It is noted that here the solution x
is a function of both ω and p = [y1, . . . , yΞ] and as such
the system of (2) is a multi-parametric system.

3. INVERSE IMPEDANCE ESTIMATION
THROUGH A PMOR FOR BEM SYSTEMS

In this section the parametric model order reduction tech-
nique employed on impedance parametrized BEM sys-
tems is introduced and subsequently the inverse problem
is defined as an optimization procedure. More details
about the techniques leveraged within this section can be
found in references [1, 7, 14].

3.1 Approximation of the BEM system with
Chebyshev polynomials

As indicated in section 2, although the impedance
parametrization of the BEM system is affine, the sys-
tem itself remains non-affinely dependent on angular fre-
quency ω. An affine approximation of the system in
equation (2) can be constructed selecting either a Cheby-
shev [15] or a Taylor approximation [7] for each entry of
A(ω),B(ω) and b(ω) independently. For example, the
system can be rewritten employing Chebyshev polynomi-
als as

( M∑
i=0

′
ci(ω)(T

A
i +

Ξ∑
j=1

yjT
Bj

ji )
)
x(ω,p) =

M∑
i=0

′
ci(ω)qi,

(3)
where ci(ω) are the Chebyshev polynomials of the first
kind up to order M , with i = 0 . . .M , and the prime in-
dicates that the first term is halved. Additionally, TA ∈
CN×N and TBj ∈ CN×N represent the Chebyshev coef-
ficients developed for the frequency dependent matrix A
and Bj , while qi ∈ CN are the coefficients for b. As indi-
cated in [13] storing all coefficients of equation (3) might
result in a tremendously high memory requirement, since
M × (Ξ+1) dense N ×N matrices need to be stored. As
a result, employing such a technique is enabled only when
this is combined with an appropriate parametric model or-
der reduction strategy.

3.2 Galerkin Model Order Reduction for impedance
parametrized BEM systems

Imposing a Galerkin one-sided projection of the system in
(3) enables the storage of the affinely approximated sys-
tem but also leads to an efficient model order reduction
strategy. Employing such a strategy, the true parameter
dependent solution x(ω,p) is approximated by a solution
x̂(ω,p) ∈ W, i.e. the solution vector is expressed as a
linear combination of the ℓ column vectors of the reduced
basis W ∈ CN×ℓ, with W := span{W}, as

x(ω,p) ≈ x̂(ω,p) = Wxℓ(ω,p), (4)

which reduces the dimension of the subspace within
which the solution lies to ℓ. Imposing the Galerkin condi-
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tion the system can be written as

M∑
i=0

′
ci(ω)W

H(TA
i +

Ξ∑
j=1

yjT
Bj

ji )Wxℓ(ω,p) (5)

=

M∑
i=0

′
ci(ω)W

Hqi, (6)

where WH represents the conjugate transpose of the pro-
jection basis W, thus resulting in a series of reduced order
matrices as

M∑
i=0

′
ci(ω)(T

A
r,i+

Ξ∑
j=1

yjT
Bj

r,ji)xℓ(ω,p) =

M∑
i=0

′
ci(ω)qr,i.

(7)
In the above expression (7) it holds TA

r,i,T
Bj

r,ji ∈ Cℓ×ℓ

and qr,i ∈ Cℓ. The approximation error introduced by (4)
is driven by the quality of the reduction basis W, which
can be guaranteed by automatic and adaptive construction
techniques as the ones reported in [1,14]. However, in or-
der to achieve an optimal algorithmic procedure, this basis
needs to be constructed before deploying the affine ap-
proximation in order to avoid storing the entire sequence
of full order dense matrices [7].

.

3.3 Constructing the reduction basis with a
multi-parameter Krylov recycling

To construct a high quality reduction basis for the para-
metric system of (2) a multi-parameter Krylov subspaces
recycling strategy can be employed. The goal of such a
strategy is to find a basis W,W := span{W}, such that
the resulting residual satisfies

r(ω,p) ≤ rtol, ∀ω ∈ Φ ⊂ Ψ,p ∈ S ⊂ P, (8)

where Φ is a predefined grid of Ψ and S a predefined
grid of P , with P = P1 × · · · × PΞ being the paramet-
ric space containing the Ξ single dimensional parameter
spaces P1, · · · , PΞ. Without loss of generality, the initial
guess for the system solution is chosen as x0(ω,p) := 0
and therefore omitted.

To construct the basis, Krylov subspaces that are com-
monly employed for the iterative solution of single linear
systems are collected. These subspaces follow the form of

Kℓ(A,b) = span{b,Ab, . . . ,Aℓ−1b}. (9)

Combining multiple of those Krylov subspaces can yield
a high quality reduction basis as demonstrated in [1,7,14].
The cumulative subspace can be written as

Ktot =

L,q⋃
i=1,j=1

K
ωi,pj

ℓ(ωi,pj)
, (10)

where Ω := [ω1, . . . ωL] and Q := [p1, . . . ,pq]. In the
above expression the superscript indicates the parameter
configuration for which these Krylov subspaces have been
constructed, while the subscript indicates the dimension of
those. The spacing between two sampled configurations
and the dimension of the subspaces can be selected to re-
main constant as proposed in [7] or an adaptive selection
can be employed as introduced in [1, 14].

3.4 Impedance identification as an optimization
problem

Inverse identification methods aim to determine the pa-
rameter values that lead to the most accurate match be-
tween the model predictions and experimental measure-
ments. This can be achieved by formulating an optimiza-
tion problem and selecting the objective function to be
minimized as the difference between the numerical and
experimental measurements, while the system parameters
are the variables. However, in this paper the measurement
data are replaced by the response of a system retrieved
through a virtual experiment, assuming that the frequency
response functions (FRFs) of a system are given but its
impedance properties are unknown.

The optimization problem can be obtained by min-
imizing the objective function f that represents the dis-
crepancy between the measured and simulated FRFs,
which can be written as

f(ω,p) =

nmic∑
i=1

(ψi(ω,p)− ψ̃i(ω))
2, (11)

where nmic is the number of response functions consid-
ered, ψ is the simulated pressure and ψ̃ is the measured
response from the (virtual) experiment. Therefore, to re-
trieve the frequency dependent impedance function the
optimization problem defined as

argmin
p
f(ω,p) (12)

needs to be solved for each value of ω.
The solution of this optimization problem is per-

formed using the steepest descent method and the finite
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difference approach to calculate the gradient of the cost
function. Since following such an approach multiple so-
lutions of the system are required to evaluate both the cost
function and the gradient for each iteration, employing the
above pMOR approach can significantly reduce the com-
putational resources required for this task.

4. RESULTS

In this section, the performance of the proposed tech-
nique to identify the impedance combining in-situ mea-
surements with a reduced order Boundary Element model
is examined. As an initial proof of concept the simulated
response of the KU Leuven soundbox [2] with known
impedance boundary conditions is considered as the mea-
surement response. The soundbox is considered as a good
demonstration example due to the numerous internal res-
onances that occur within the acoustic cavity. Achieving
good performance for this case, exterior radiation cases or
less resonant geometries are expected to match the perfor-
mance levels set by this example.

4.1 Problem definition

Impedance patch

M1

R1

R2

1.2m

0.8m

1m

Figure 1: Soundbox model

The model of the soundbox considered in this pa-
per is given in Figure 1. The model consists of 6503
linear elements and leads to a system of equations with
6503 Degrees of Freedom (DOFs) and is valid for the
frequency range Ψ := [0, 1000]Hz following the rule
of 6 elements per wavelength [16]. It contains an ab-
sorbing patch at the bottom side of the cavity, while all
other walls are considered rigid, a monopole at the posi-
tion M1 := [0.125, 0.05, 1.035] and two receivers R1 :=
[0.59, 0.52, 0.56] , R2 := [0.78, 0.825, 1.08], which are
located at the center and upper corner of the cavity, respec-

tively. The acoustic admittance value y1 of the patch is as-
sumed to be described by the Delany-Bazley model [17].
The selected impedance function can be retrieved by as-
signing a static flow resistivity of σ = 10000Nsm−4 and
material thickness of t = 1.4cm. The response measured
at the two receivers is given in Figure 2. These responses
will be used as target for the inverse impedance identifica-
tion performed based on section 3.4.

Figure 2: Measured response functions atR1,R2 for
Delany-Bazley impedance on the porous layer.

4.2 Parametric MOR with Krylov recycling

As explained in section 3.4 the computational cost asso-
ciated to such an inverse approach can be mitigated lever-
aging the technique elaborated in section 3.3. The para-
metric reduced order model constructed in this section
is assumed to be valid for the frequency interval Ψ :=
[0, 1000] and an impedance interval of the lining patch of
Z := [500, 2500] + [−10000, 0]jNs/m3, where j is the
imaginary unit. Employing the techniques introduced in
section 3.3 a reduction basis is constructed aiming at an
accuracy of rtol := 0.01. The reduction basis consists of
530 basis vectors, implying that a reduced order model of
the same size will be obtained upon a Galerkin projection
of the full order system. To achieve a sufficiently accurate
affine approximation of the system, 36 Chebyshev nodes
are selected and thus, Chebyshev polynomials up to an
equal order are used to ensure an accurate reconstruction
for the largest distance of two geometry points, i.e. two
opposite corners of the soundbox. For more information
about the selection procedure, one is referred to [18].

Plotting the residual of the approximated solutions of
equation (2) in Figure 3, it is possible to assess the qual-
ity of the parametric reduced order model for variations of
the real part of the impedance patch. Observing that the
global residual falls in general below the threshold of rtol,
it is concluded that any real impedance value within ℜ(Z)
can be modeled by the constructed reduced order model,
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Figure 3: Residual of solutions for grid of
impedance values for ℜ(Z) := [500, 2500]Ns/m3 us-
ing the reduced order model.

while similar conclusions can be made for the imaginary
part. Thus, employing this reduced order model it is im-
plied that calculation of the response using multiple dif-
ferent materials, including the one imposed in the virtual
experiment can be efficiently approximated in the design
phase or for inverse characterization of acoustic compo-
nents. More information about the reduced order model
can be found in [13].

4.3 Inverse identification of patch impedance

Having built the above reduced order model, the acous-
tic response of the soundbox employing any impedance
value lying within Z can be efficiently reconstructed. De-
ploying the procedure described within section 3.4, the
impedance of the patch (see Figure 1) can be inversely
identified as demonstrated in Figure 4. It is observed
that the patch impedance is well reconstructed for all the
frequencies above 50Hz both for its real and its imagi-
nary part, while for higher frequencies, the optimization
works well resulting in a practically negligible error or
even to exact impedance value. The discrepancy at the
lower frequencies can be explained by the reduced impact
of the impedance to the acoustic response. As a result, the
boundary condition is in close proximity to being fully
rigid and thus, the optimization procedure can be trapped
into potential local minima existing in that region.

It has to be noted that zero noise is considered in this
inverse procedure, thus leading to the ideal response func-
tions in Figure 2 and a very good reconstruction in Figures
4a and 4b. However, typical experimental procedures in-
volve noise due to uncertainties in the model and exper-
imental setup, in the material properties etc. Neverthe-
less, including noise would exceed the scope of this arti-
cle, which is to provide an initial proof of concept for the
inverse strategy.

(a) Real part

(b) Imaginary part

Figure 4: Comparison of identified impedance with
reference

5. CONCLUSIONS

This paper proposes an inverse approach for the in-situ
identification of the acoustic impedance of trim materials.
The approach is based on a parametric model order reduc-
tion technique for constructing a reduced order model and
an optimization scheme that retrieves the impedance value
minimizing the difference between the measured and sim-
ulated impedance. To demonstrate the validity of the pro-
posed approach, the challenging case of the soundbox in-
terior model is examined. The measured response is col-
lected using a virtual experiment, i.e., the response of the
model with a known impedance function. The impedance
function is well reconstructed, especially for the higher
frequency range.
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