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ABSTRACT

For many of its inhabitants, the underwater soundscape is
a rich source of information that may be crucial for their
survival. Moreover, in shallow coastal waters where visi-
bility is poor, the importance of sound is emphasized. Yet
coastal waters are also rich in anthropogenic sounds which
may disturb the ecosystem. Passive Acoustics Monitor-
ing (PAM) is a flexible, non-invasive, and cost-effective
solution to acquire information at habitat or community
level. Studying the acoustic scene of a habitat in a global,
holistic way is known as soundscape analysis. How-
ever, there are currently no standardized methods to char-
acterize and understand marine soundscapes in an auto-
mated way. Here we propose a methodology for clus-
tering underwater soundscapes and linking the obtained
categories to environmental parameters in space and time.
This is done using explainable artificial intelligence. The
methodology is applied to a PAM dataset collected in the
Belgian Part of the North Sea. The obtained categories
focus on background sound, which includes all combina-
tions of sounds that occur under certain conditions at spe-
cific places. With this information, the marine acoustic
scene and its change over space and time can be mapped
for the whole area of interest.
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1. INTRODUCTION

With the increase of human pressure on the ocean in the
past decades, it has become necessary to monitor and pro-
tect the ocean and its rich natural soundscapes [1]. This
can be achieved through Passive Acoustics Monitoring
(PAM), which allows for obtaining ecological informa-
tion from underwater ecosystems. PAM is of particular
interest in underwater environments, where other monitor-
ing techniques might be difficult to execute, and because
sound plays an important role for most marine species [2].

Soundscape analysis often involves the detection and
classification of several sounds, which are usually divided
between geophony, biophony, or anthropophony, depend-
ing on the nature of the source producing the sound. De-
tecting these acoustic events allows for tracking the move-
ments and behaviors of marine species, as well as mea-
suring changes in their populations over time. However,
soundscape analysis can also be done with a more holis-
tic approach instead of focusing on specific sound events
or specific species. This can provide us with information
at habitat or community level. This information can then
be used to monitor ecosystem changes and the effects of
human pressure in certain habitats [2, 3].

Here we focus on soundscape in a holistic sense.
We apply the methodology proposed in Parcerisas et al.
(2023) [4] to a long-term dataset collected in the Belgian
Part of the North Sea (BPNS). The model clusters sound-
scapes based on acoustic features and explains their oc-
currence using environmental variables that describe the
spatio-temporal context. In this paper, we use this model
to create maps for the expected soundscape class for the
whole BPNS. Furthermore, we map the expected mean
power density at the frequency bands 63, 125 Hz, and
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Figure 1. Vessel density from EMODnet [6] in the
BPNS, together with the station location of the Life-
Watch Broadband Acoustic Network [5]

2000 Hz according to the mean levels of each category
and their occurrence.

2. METHODS

We applied the methodology explained in Parcerisas et al.
(2023) [4] to long-term data acquired in the framework of
the LifeWatch Broadband Acoustic Network [5]. These
data were collected using a RESEA 320 recorder (RT-
Sys, France) together with a Colmar GP1190M-LP hy-
drophone (Colmar, Italy, sensitivity: -180 dB/V re 1µPa,
frequency range -3 dB: 10 Hz to 170 kHz). The acoustic
recorders were attached to a steel mooring frame at 1 m
above the sea bottom, with no moving parts. 14 different
deployments from 6 different stations (see Figure 1) were
considered, ranging between March 2021 and September
2022. Because of computing reasons, 10 minutes of every
recorded hour was chosen randomly for the analysis.

All acoustic data were processed using the Python
package pypam [7]. Data with a higher sampling rate than
48,000 kS/s were filtered with a low-pass Butterworth or-
der 4 filter and then downsampled to 48,000 kS/s to match
the rest of the data. Then the sounds were processed to
hybrid millidecade bands [10] because their frequency-
dependent bandwidth is well-suited for long-term spec-
tral averages and soundscape comparisons [11]. The hy-
brid millidecade bands were used as an input for the di-

mension reduction. In this first analysis, a 1-minute non-
overlapping window temporal resolution was chosen for
obtaining the spectra for analysis speed. This implies
however that short-term patterns smear out and cannot be
distinguished.

The hybrid millidecade bands were then clustered
in an unsupervised way into several categories using
Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) from the scikit-learn package [8] af-
ter a dimension reduction using Uniform Manifold Ap-
proximation and Projection (UMAP) [9]. Different com-
binations of parameters were checked to try to achieve an
optimal distribution of the data for the UMAP reduction,
where acoustic sample points were distributed in separate
clusters.

To correlate the clusters with the environmental pa-
rameters, a Random Forest (RF) was trained to predict the
acoustic categories from the environmental parameters.
The iterative training scheme of Parcerisas et al. (2023)
[4] was followed but the environmental variables used
were adjusted to accommodate the shift from a higher spa-
tial resolution and lower temporal resolution to a higher
temporal resolution and a lower spatial resolution. The
chosen variables are listed in Table 1.

With the obtained RF-model and the available envi-
ronmental parameters, the presence of different sound-
scape categories can be predicted in the whole BPNS. This
allows for visualizing the different soundscapes present
in the BPNS. For each obtained category, the SHAP val-
ues [16] were computed. Then, each obtained cluster was
assigned a characteristic spectrum by computing the mean
power density of the hybrid millidecade bands in that clus-
ter. The mean power density for each month for the hy-
brid millidecade bands 63 Hz, 125 Hz, and 2000 Hz (cen-
ter band 2002.16 Hz) was computed and mapped accord-
ing to the weighted mean considering how often a certain
category was predicted. This was done by predicting the
expected classes for every hour during a month and then
averaging according to the mean value of each cluster at
the specified frequency band. The 63 and 125 Hz bands
were selected because they are the frequency bands se-
lected by the EU to monitor the Good Environmental Sta-
tus of marine waters [17]. 2000 Hz was selected because
of its higher relevance for marine mammals, in line with
other studies [18].
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Table 1. Summary of all the used environmental variables
Parameter Encoding Source Dependency
Bathymetry [m] Converted to positive EMODnet

Bathymetry [12]
Space

Day moment Categorical encoding Skyfield [13] Space, Time
Shipping Density
[km−2month−1]

None EMODnet Human
Activities [6]

Space, Time

Seabed habitat Categorical encoding EMODnet Seabed
Habitats [14]

Space

Salinity [PSU] None ERDDAP [15] Space, Time
Surface Temperature [K] None ERDDAP [15] Space, Time
Surface current speed
[ms−1]

None ERDDAP [15] Space, Time

Height above sea level
[m]

None ERDDAP [15] Space, Time

Wave period [s] None ERDDAP [15] Space, Time
Wave height [m] None ERDAPP [15] Space, Time
Moon phase [rad] Cyclic encoding Skyfield [13] Space, Time
Week number Cyclic encoding NA Time

3. RESULTS

4 soundscape categories were clearly identified (see Fig-
ure 2). The parameters used for the UMAP projection
were: number of neighbors=20, minimum distance=0.
For the DBSCAN algorithm: minimum samples=240, ep-
silon=0.5. The obtained RF-model classified the sound-
scape categories with 91.68% accuracy. The description
of each cluster is shown in Table 2. The principal variable
selected to explain the clusters was seabed habitat, which
in this case was linked to location (see Figure 2). This
suggests that the acoustic characteristics of the habitats in
the BPNS differ more between habitats than within. Cat-
egory 1 was not correctly predicted by the model, which
suggests that it represents a certain acoustic situation not
linked to the selected environmental variables. This hy-
pothesis was supported by the fact that category 1 com-
prised samples from all the different locations and deploy-
ments.

An example of a map of the predicted category in
March and November can be seen in Figure 4. Category
0 seems to be the most present, and category 1 seems to
be linked to shallower areas. This is also reflected in the
frequency distribution. The power density at 63 Hz is low
in areas classified as category 2 or 3, probably because 63

Hz is below the cut-off frequency in these shallow areas
(Figure 5). In areas classified as soundscape category 0,
the level at 63 and 125 Hz is higher than average while it is
lower than average at 2000 Hz. By analyzing the obtained
SHAP plots per class, it can be seen that category 0 is
linked to higher shipping density (see Figure 3 and Table
2)). This is in line with shipping sound production, which
is usually characterized by having most of the energy at
lower frequencies.

The authors emphasize that this paper reports only a
preliminary partial analysis. Several seasonal effects have
yet to be explored in detail. Moreover, the limited tem-
poral resolution of 1 minute does not allow for the iden-
tification of specific bio-sounds that may contribute to the
soundscape only at certain locations and certain times of
the year. Further analysis will be reported elsewhere.

4. DISCUSSION AND CONCLUSIONS

The prediction of the categories for the whole BPNS
showed that this is an acoustically dynamic area, being
influenced both by time and space. The category predic-
tion by the RF-model seemed to be influenced mainly by
the seabed habitat and shipping density (Table 2). Even
though all the data were collected with the same instru-
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Table 2. Manual description of the SHAP values of
each category.

Category Description
0 seabed habitat 5.27, high shipping,

high salinity
1 (not a soundscape class) high shipping,

seabed habitat A5.25 or A5.26, high
temperature

2 seabed habitat A5.23 or A5.24, low
shipping

3 low shipping, seabed habitat A5.25 or
A5.26

Figure 2. Top: Obtained clusters using DBSCAN
in the UMAP space. -1 represents samples classified
as noise and not belonging to any cluster. Bottom:
distribution of the stations in the UMAP space.

Figure 3. SHAP values of the obtained category 0
resulting from the trained RF-model.

mentation, the data clustered clearly according to the lo-
cation where it was recorded 2. This indicates that differ-
ent locations in the BPNS have different soundscapes and
they can be distinguished from each other.

The shipping density used in the model represents the
monthly average computed from the Automatic Identifi-
cation System (AIS) data and considering all types of ves-
sels. Therefore, further work is necessary to also include
vessels which do not use AIS, and also to investigate if
different shipping activities (e.g. fishing, tanker...) influ-
ence the soundscape categories in different ways. Further-
more, using AIS data at a higher time resolution (e.g. daily
or hourly average) would provide a more dynamic under-
standing of the effects of shipping noise on the obtained
soundscape categories.

Unsupervised categorization of soundscapes can be
used as a tool to understand and predict the long-term
soundscape. The different categories can then be acous-
tically characterized by looking at the mean spectrum per
category. Furthermore, these categories can be placed in
an environmental context using explainable artificial in-
telligence (XAI), so we can understand when and where
they occur. This is especially interesting in dynamic shal-
low areas such as the BPNS, where propagation patterns
are complex to model.

The obtained power density distribution maps per fre-
quency band give insight into the expected levels per fre-
quency in the whole BPNS. Using hybrid millidecade
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Figure 4. Predicted soundscape categories in the
BPNS (black line is the delimitation of the Exclu-
sive Economic Zone) according to the environmental
parameters using the RF-model, from two randomly
selected timestamps. Top, prediction of 8th of March
of 2022 at 12:00 am. Bottom, prediction of 25th of
November at 00:00 am. Figure 5. Predicted mean power density for the three

selected frequency bands during January 2022. Cat-
egories predicted hourly for the entire month. Mean
power density computed considering the assigned
power density at each frequency for each category
and its hourly occurrence during the month. Top, 63
Hz. Middle, 125 Hz. Bottom, 2000 Hz.
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bands instead of one-third octave bands (used in [4]) is
suitable for long-term soundscape prediction. The ob-
tained categories are then less dynamic in space and time
and more linked to habitat (see Figure 2). Furthermore, in
the long-term dataset there are less combinations of spa-
tial features than in Parcerisas et al. (2023) [4]. The ob-
tained clusters are probably not shaped by short biological
sounds but by longer, continuous sounds. This is obtained
by choosing a lower time resolution of 1 second power
spectrum density averaged in 1 minute. Computing the
hybrid millidecade bands this way, as proposed by [10],
smooths out transient sounds.

The obtained distribution of categories and their evo-
lution in time can help us understand the different acous-
tic scenes and their variability. This can be used to de-
tect anthropogenic noise pollution, or rapid degradation
of ecosystems [19]. This suggests that hybrid millidecade
bands averaged in 1-minute bins are suitable for habitat
discrimination but are not sensitive to the sound correlated
to other temporal environmental data, which contributes to
the soundscape in a finer time resolution.
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esnay, “Scikit-learn: Machine Learning in Python,”
Journal of Machine Learning Research, vol. 12,
no. 85, pp. 2825–2830, 2011.

[9] L. McInnes, J. Healy, and J. Melville, “UMAP: Uni-
form Manifold Approximation and Projection for Di-
mension Reduction,” Sept. 2020.

[10] J. L. Miksis-Olds, P. J. Dugan, S. B. Martin,
H. Klinck, D. K. Mellinger, D. A. Mann, D. W. Poni-
rakis, and O. Boebel, “Ocean Sound Analysis Soft-
ware for Making Ambient Noise Trends Accessible
(MANTA),” Front. Mar. Sci., vol. 8, p. 703650, Aug.
2021.

[11] S. B. Martin, B. J. Gaudet, H. Klinck, P. J. Dugan, J. L.
Miksis-Olds, D. K. Mellinger, D. A. Mann, O. Boebel,
C. C. Wilson, D. W. Ponirakis, and H. Moors-Murphy,
“Hybrid millidecade spectra: A practical format for
exchange of long-term ambient sound data,” JASA Ex-
press Letters, vol. 1, p. 011203, Jan. 2021.

[12] EMODnet Bathymetry, “EMODnet Digital
Bathymetry (DTM 2020).”

[13] B. Rhodes, “Skyfield: High precision research-grade
positions for planets and Earth satellites generator,”
July 2019.

[14] EMODnet Seabed Habitats, “Seabed Habitats,” 2018.

[15] MFC ODNature RBINS, “Physical State of the Sea -
Belgian Coastal Zone - COHERENS UKMO,” 2023.

6096



10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

[16] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M.
Prutkin, B. Nair, R. Katz, J. Himmelfarb, N. Bansal,
and S.-I. Lee, “From local explanations to global un-
derstanding with explainable AI for trees,” Nat Mach
Intell, vol. 2, pp. 56–67, Jan. 2020.

[17] “Commission Decision (EU) 2017/848 of 17 May
2017 laying down criteria and methodological stan-
dards on good environmental status of marine wa-
ters and specifications and standardised methods for
monitoring and assessment, and repealing Decision
2010/477/EU (Text with EEA relevance. ),” May
2017.

[18] M. Mustonen, A. Klauson, M. Andersson, D. Cloren-
nec, T. Folegot, R. Koza, J. Pajala, L. Persson,
J. Tegowski, J. Tougaard, M. Wahlberg, and P. Sigray,
“Spatial and Temporal Variability of Ambient Un-
derwater Sound in the Baltic Sea,” Sci Rep, vol. 9,
p. 13237, Sept. 2019.

[19] M. F. McKenna, S. Baumann-Pickering, A. C. M.
Kok, W. K. Oestreich, J. D. Adams, J. Barkowski,
K. M. Fristrup, J. A. Goldbogen, J. Joseph, E. B.
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