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ABSTRACT

Personalized head-related transfer functions (HRTFs) are
essential in systems aiming for realistic binaural sound re-
production, taking the individual anatomy into account.
HRTFs are typically acoustically measured, but they can
also be numerically calculated provided an accurate 3D
geometry of the listener’s head and pinnae. A parametric
pinna model (PPM) represents a tool to personalize a well-
defined 3D mesh of a generic pinna to the actual geometry
of the listener’s ear. However, the PPM-parameter ranges
covering the variety of human ears are yet unclear. In this
work, we describe a previously introduced PPM and its
key features. We further outline methods for an evalua-
tion of its parameter ranges. The insights gained can be
used to create various datasets of pathological and non-
pathological ears and train neural networks to automati-
cally parameterize the PPM to describe the individual ge-
ometries of human ears.
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1. PARAMETRIC PINNA MODELS

The shape of human ears is highly individual and
has significant influence on head-related transfer func-
tions (HRTFs) [1–3]. A PPM can be a powerful tool for
various applications including the creation of a database
of synthetic ears and corresponding HRTFs, which can be
used for data-driven HRTF-personalization approaches.
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The database ideally contains representable examples of
ear geometries. The unique shape of the ear is not only
relevant for HRTF individualization but can also be uti-
lized for biometric identification, which was the moti-
vation of other pinna models, e.g., [4]. Similar to many
face-modeling approaches, their model is a 3D-morphable
model (3DMM), however, it is based on 20 ears only [5].
In contrast, other PPMs have been developed with a clear
focus on HRTF calculation, [6, 7]. The limitations of these
models are unclear, thus, a more general PPM describing
the ear shape through a vector of parameters has been pro-
posed [8]. Once the PPM parameters are determined, it is
possible to synthesize a pinna geometry using the PPM
parameter vector, and numerically calculate HRTFs by
application of numerical simulation frameworks such as
Mesh2HRTF [9].

This PPM consists of an armature, which is motivated
by the biological form of the human ear, as defined in [8].
Using various control points, this structure can be mod-
ified, by tweaking the underlying Bézier curves. These
changes also effect a mesh which is connected to the
bones. The mesh structure can be further altered through
parameters controlling the weighting of the mesh. In to-
tal, there are 144 parameters which can be changed. Even
though the model is motivated by the biological ear form,
it is quite similar to blend shape models in face modeling.
Various target meshes can be manually registered to the
PPM [8]. However, an automatic model registration ap-
proach has not yet been introduced. The connection of the
PPM-parameter set and the ear geometry is nonlinear and
can be described by Equation 1, describing how the ear
geometry T is mapped onto the parameter vector Θ, i.e.

f : T NxM −→ ΘD, (1)

where N and M are the dimension of the geometric ear
representation, e.g. images or point clouds, and D is the
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number of PPM parameters, respectively.
It is not known yet how to automatically register the

large variety of human pinnae to that PPM. Deep neu-
ral networks (DNNs) represent a promising approach, as
DNNs can be trained to map data to non-linear spaces.
Such algorithms, however, rely on extensive (labeled)
databases. To this end, ear geometries can be synthesized
and represented in form of point clouds or rendered im-
ages, therefore enabling the creation of large databases for
neural network training purposes. In turn, this strategy re-
quires to determine feasible parameter ranges which allow
generating human-like ears.

2. MODEL EVALUATION IN OTHER DOMAINS

One of the most groundbreaking face models was built by
analyzing laser scans of 200 faces [10]. This model was
represented by principal components, therefore the face
shape can be defined by

Smodel = S +

m−1∑
i=1

αisi, (2)

where S is the average face of the 200 scans and si repre-
senting the eigenvectors of the orthogonal basis as a result
of the principal component analysis (PCA). By changing
the weighting factor αi, new faces can be created. Cru-
cially, algorithms to register unseen faces have been pro-
posed [10], when face representations are available either
as 3D scans or images. More recently, the amount of faces
forming the basis of the model has been extended drasti-
cally for the creation of such 3DMMs. As an example, a
model utilizing 10 000 face scans, also including people
from a variety of ethnics [11].

Models built on blend shapes are also used in face
modeling. These models deform a neutral-base face model
through additive deformations by controlling parameters.
In [12], a template mesh is deformed to match a target
mesh by an artist. While those models are very expres-
sive in the shapes they allow to create, different parame-
ter combinations can result in the same shape. This prob-
lem makes automatic registration very challenging. Mod-
els combining both PCA and blend shape approaches have
also been proposed [13].

3. EVALUATION OF A PARAMETRIC PINNA
MODEL

The PPM can be manually registered to a target mesh,
which has been obtained by scanning the pinna of a sub-

DNN Θ*D𝒯NxM
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Figure 1: Process of supervised training. During the training, the
predicted model output Θ∗D from a training sample T NxM is
compared to the actual output ΘD . The DNN weights are up-
dated according to the cost function.

ject. First, the target mesh is loaded into a Blender 1

workspace. In a second step, the PPM in its default pa-
rameterization is also loaded in said workspace. The tem-
plate is the mean ear structure by means of a PCA-based
average [14]. Thereafter, the PPM parameters are modi-
fied to fit the target mesh. The registration is finished once
the PPM mesh and the target mesh coincide as closely
as required. The PPM parameters can be manually fit
with such precision that the geometric error is below the
defined boundary of 1 mm. This error also results in a
small enough acoustic error, such that the resulting HRTFs
match the individual HRTFs sufficiently enough. Since the
manual registration takes a lot of effort and requires the
individual target meshes, an automatic algorithm for esti-
mating the PPM parameters would be preferred. Figure 1
shows a supervised approach in which a DNN is trained
on a large dataset of PPM instances, as one possible way
to tackle the estimation problem.

Such a dataset would consist of the high dimensional
pinna geometry T and the corresponding model param-
eter vector Θ. It is possible to synthesize a large amount
of pinnae from a given PPM-parameter set, but the pa-
rameter ranges for representing a diverse set of non-
pathological human ears are still unknown. In order to
determine feasible parameter ranges more manually fitted
PPM-representations could be created. Ideally this should
be done by more than one person in order to reduce bi-
ases in the usage of the model, since it is possible to cre-
ate the same shape using different parameter combina-
tions. In the future multimodal distributions of parame-

1 https://www.blender.org
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Figure 2: Process of unsupervised training. During the training,
the input sample T NxM is compared to a synthesised version of
the input sample T ∗NxM created from the predicted output of
the network Θ∗D .

ters can be derived, from which parameter ranges are set
for the generation of a dataset. Alternatively or addition-
ally, pinna experts could be tasked with the creation of
pinnae, which are no longer non-pathological, therefore
deriving boundaries for the parameters. Neural-network
architectures which take unordered point clouds as input
have been proposed (see, e.g. [15]). Following such ap-
proaches it might make it possible to use an unsupervised
method for model evaluation, cf. Figure 2.

The advantage of training a network in an unsuper-
vised way is that the PPM parameters can be unknown,
meaning that the training dataset only requires the pinna
geometry but not the corresponding PPM-parameter la-
bels. Ideally, if available, real-world databases of pinna
geometries could be used for such approach, given that
enough data is available. But also the creation of synthetic
data would be easier as the ranges of the PPM parame-
ters would not need to be known for data creation, and a
PCA-like approach similar to [4] could be used.
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