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ABSTRACT

The acoustic eigenvalues of an enclosure quantify its res-
onant frequencies and damping coefficients. This infor-
mation can be used to determine the acoustic character-
istics of a room. Various methods for estimating eigen-
values from a measured room impulse response can be
found in the literature. Of these methods, the matrix pen-
cil method is considered in this work. The matrix pencil
method provides acceptable eigenvalue estimates, albeit
alongside several spurious eigenvalues. In this work, the
appearance of spurious eigenvalues is demonstrated by an-
alyzing an analytic impulse response. Additionally, the
use of the well-known Rayleigh quotient iteration algo-
rithm to search for eigenvalues close to informed initial
guesses and, thus, to minimize the estimation of spurious
eigenvalues is presented. The approach is verified using
finite element eigensolutions of a room.

Keywords: Eigenvalue estimation, Matrix pencil
method, Rayleigh quotient iteration.

1. INTRODUCTION

In many scientific fields, there is often a need to estimate
the eigenvalues of some system under test. The eigenval-
ues of physical systems can be used to quantify the res-
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onant frequencies and damping coefficients of the modes
of those systems and are, therefore, widely used for engi-
neering applications. A few examples include the analysis
of power systems [1], the development of surface acous-
tic wave devices [2], and the analysis of biomedical sig-
nals [3].

Eigenvalue analysis has also found applications in the
field of acoustics, for example, adaptive beamforming [4],
musical instrument analysis [5] and room mode parame-
ter estimation [6]. In the context of room acoustics, the
room mode parameters are resonant frequencies, damp-
ing coefficients, and complex-valued spatially dependent
modal amplitudes. Mäkivirta et al. [7, 8] presented loud-
speaker equalization techniques to modify modal decay
rates in a room. The techniques require the estimation of
eigenvalues, i.e., resonant frequencies, and damping co-
efficients. Another application of eigenvalue estimation
is to enable the estimation of the locally reacting surface
impedance of an acoustically absorbing sample in a rever-
berant chamber, as described by Prinn et al. [9]. A nec-
essary requirement for this impedance estimation method
to provide good estimates is the availability of precise es-
timates of the resonant frequencies and damping coeffi-
cients of the chamber containing the sample to be mea-
sured.

Precisely estimating eigenvalues from measured sig-
nals is a challenging task, and there is a long history of
research into this problem. Examples of, perhaps, the
most commonly known signal processing techniques that
have been developed to estimate these parameters are:
MUSIC [10], ESPRIT [11], and the generalized pencil
of function method [12], which is also referred to as the
Matrix Pencil Method (MPM). Interestingly, it can be
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shown that these three approaches are all Prony-like meth-
ods [13, 14]. In this work, only the MPM is considered,
which has found application in many fields. For example,
Laroche [5] used the MPM to synthesize the admittance
curves of a guitar bridge and analyze the beats of a piano
tone. This was achieved by identifying modal parameters
from measured signals and reconstructing the signals us-
ing the estimated parameters. More recently, Haddad and
Noga [15] considered the MPM for applications in speech
processing, and a quantum version of the MPM has been
proposed [16], which has the potential to reduce compu-
tation times.

In this work, we are motivated by the potential of im-
proving the approach proposed by the current authors [9]
to estimate the locally reacting surface impedance at low
frequencies in reverberant environments. Thus, the prob-
lem considered here is the estimation of the resonant fre-
quencies and damping coefficients of room modes. While
this problem can be partially addressed by applying the
MPM, the MPM provides spurious estimates. Differenti-
ating between valid and spurious estimates is a challeng-
ing task. This problem is mitigated here by using ini-
tial guesses of the room’s eigenvalues and the well-known
Rayleigh quotient iteration algorithm to minimize the ap-
pearance of spurious estimates. In the following, we refer
to the approach as the Rayleigh Quotient Matrix Pencil
Method (RQMPM).

The remainder of this paper is structured as follows.
In Sec. 2, the MPM is briefly reviewed. In Sec. 3, the
matrix pencil is re-derived, and the Rayleigh quotient it-
eration algorithm is presented. In Sec. 4, the RQMPM is
verified and validated using a test case with both simulated
and measured data. This paper is concluded in Sec. 5.

2. EIGENVALUE ESTIMATION

In this section, the MPM is introduced, and an example
of the spurious eigenvalue estimates that we are trying to
remove from the solution set is given.

2.1 Matrix Pencil Method

We begin by presenting Prony’s model [17], which de-
composes a time-dependent signal into a sum of damped
exponential functions, as follows:

y(t) =
∞∑
j=1

aj
2

(
eiϕjeλ

+
j t + e−iϕjeλ

−
j t
)

. (1)

In this model, aj is an amplitude component, ϕj is a phase
term, λ±

j = ±i2πfj −σj is a complex-valued eigenvalue,
with resonant frequency fj and damping coefficient σj ,
and t is time. In practice, the number of eigenvalues used
in the sum is truncated, resulting in an approximate de-
scription of the signal, denoted here by h. Changing the
summation index, we can write:

h(t) =

M∑
m=1

ameλmt , (2)

where am is an mth complex-valued amplitude, which in-
cludes magnitude and phase, and λm = i2πfm−σm. The
signal is sampled at discrete time intervals, tn, such that
h(tn) = hn. The maximum number of samples is denoted
by N . Choosing a uniform sampling interval implies a
time step ∆t = 1/fs, with sampling frequency fs.

The discretized time signal, h, is used to construct a
matrix pencil. The MPM [12] requires the solution of the
following generalized eigenvalue problem for all eigen-
values γm with m ∈ {1, 2, . . . ,M}:

det
(
H†

1H2 − γmI
)
= 0 , (3)

where superscript † indicates use of the Moore-Penrose
pseudoinverse, I is the identity matrix, and H1 and H2

are Hankel matrices given by:

H1 =


h1 h2 . . . hp

h2 h3 hp+1

...
. . .

...
hN−p hN−p+1 · · · hN−1


(N−p)×p

, (4)

and

H2 =


h2 . . . hp hp+1

h3 hp+1 hp+2

...
. . .

...
hN−p+1 · · · hN−1 hN


(N−p)×p

. (5)

When generating the matrices, pencil parameter p is an
integer chosen such that M ≤ p ≤ (N −M). Typically,
p = round(N/2). Since γm = eλm∆t, the eigenvalues of
the system that generates the signal can be obtained from

λm = i
arg(γm)

∆t
− log(|γm|)

∆t
. (6)
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2.2 Spurious eigenvalues

While the MPM provides good estimates of the system
eigenvalues, the estimates are often polluted with spurious
eigenvalues, see, e.g., Refs. [18, 19].

As an example of this behavior, a simulated time-
dependent signal is used in this section to demonstrate the
spurious estimates obtained. The signal, shown in Fig. 1,
is given by

h(t) = Re

(
M∑

m=1

ameλmt

)
, (7)

where am = 1,∀m, fm = (30, 70, 110, ..., 990), σm =
2π,∀m, fs = 3 kHz, and the signal has a duration of 1 s.
Pink noise has been added to the signal, with a signal-to-
noise ratio of 100 dB.
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Figure 1. The time-dependent signal used to demon-
strate the spurious eigenvalues. Note that the signal
has been normalized by its maximum absolute value.

This signal is analyzed using the MPM, and a selected
range of estimates are compared to reference eigenvalues
in Fig. 2. We observe that the MPM provides valid esti-
mates of the reference eigenvalues. However, due to the
presence of noise, spurious eigenvalues are also estimated.
The spurious eigenvalues pollute the estimates, making it
difficult to identify the valid estimates. Note that there
are many more MPM solutions than those shown here;
The complete solution set ranges from f = −fs/2 to
f = fs/2, and from σ = −2846 to σ = 620.1.

Various attempts to remove the spurious eigenvalues
can be devised. For example, we could choose the eigen-
values which are closest to the frequencies at which the
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Figure 2. Comparison of reference eigenvalues and
eigenvalue estimates obtained through use of the
MPM.

peaks lie in the transfer function. This approach would
have the disadvantage of omitting eigenvalues that are
close in frequency and are, therefore, indistinguishable
from a transfer function peak analysis. An alternative ap-
proach would be to perturb the eigenvalue system, given
in Eq. (3), in the hope that the estimates whose values do
not significantly change are valid estimates. However, this
approach is not robust in the presence of noise.

One remedy that the authors have found quite useful
in this respect is presented in the next section and forms
the main contribution of this work.

3. RAYLEIGH QUOTIENT ITERATION

To avoid the spurious estimates, we choose to use
Rayleigh quotient iteration (see, e.g., Saad [20, p. 90]) to
solve Eq. (3). Because the solution of a large eigenvalue
system is avoided, Rayleigh quotient iteration comes with
the benefit of potentially reducing the computational com-
plexity of the estimation process. This, of course, depends
on the number of required eigenvalue estimates.

Rayleigh quotient iteration requires initial guesses of
the eigenvalues and eigenvectors of the signal. The ini-
tial guesses used in this work are based on a priori knowl-
edge of the system’s geometry and damping coefficient es-
timates. Other approaches are available, and these are dis-
cussed in Sec. 3.3. For the moment, we re-derive Eq. (3)
to identify the signal eigenvectors used as initial guesses
for the Rayleigh quotient iteration algorithm.
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3.1 Eigenvalue problem derivation

Eq. (2) can be written as:
h1

h2

...
hN

 =


eλ1t1 eλ2t1 . . . eλM t1

eλ1t2 eλ2t2 eλM t2

...
. . .

...
eλ1tN eλ2tN . . . eλM tN


︸ ︷︷ ︸

E


a1
a2
...

aM

 . (8)

Noting that h(tn +∆t) =
∑M

m=1 ameλm(tn+∆t), we can
write:

H1 = E


a1 a1e

λ1∆t . . . a1e
λ1(p−1)∆t

a2 a2e
λ2∆t a2e

λ2(p−1)∆t

...
. . .

...
aM aMeλM∆t . . . aMeλM (p−1)∆t


︸ ︷︷ ︸

A

,

(9)
and,

H2 = E


eλ1∆t 0 . . . 0

0 eλ2∆t
...

...
. . . 0

0 . . . 0 eλM∆t


︸ ︷︷ ︸

Γ

A . (10)

Writing H1 and H2 in terms of E, we obtain

HΨ = ΨΓ , (11)

where H = (H1)
†H2, Ψ = A†, and Γ is a diagonal

matrix populated with eigenvalues. By choosing the mth
eigenvalue, this can be written as a linear eigenvalue prob-
lem

Hψm = γmIψm , (12)

which is solved to obtain a set of eigenvalues γ. It should
be clear that we have re-derived the MPM presented in
Sec. 2.1. Since eigenvector ψm can have arbitrary ampli-
tude, ψm can be constructed from knowledge of λm, p,
and ∆t (cf. Eq. (9)).

Out of interest, an alternative derivation that uses the
first order gradient, dh/dt, to generate H2 results in an
eigenvalue system of the form: Hψm = λmIψm. How-
ever, the accuracy of this alternative approach is limited by
the accuracy of the method used to obtain dh/dt. Accept-
able results might be obtained by computing the gradient
in the frequency domain as long as the decay of the signal

is adequately captured, but this alternative approach has
been found to be less accurate than the approach derived
above.

3.2 Rayleigh quotient algorithm

To find only valid (i.e., non-spurious) estimates of the
eigenvalues, Rayleigh quotient iteration can be used to
solve Eq. (12). An initial guess for eigenvector ψm can
be iteratively refined, using the formula:

ψ(q+1)
m =

(
H− γ

(q)
m I
)−1

ψ(q)
m∥∥∥∥(H− γ

(q)
m I
)−1

ψ(q)
m

∥∥∥∥ , (13)

and the updated eigenvalues can be estimated by using

γ(q+1)
m =

(
ψ(q+1)

m

)T
Hψ(q+1)

m(
ψ(q+1)

m

)T
ψ(q+1)

m

, (14)

where q = 1, 2, . . . , Q indicates the number of iterations.
The initial guess for the eigenvector ψ(1)

m is given by the
mth column of Ψ, and γ

(1)
m = eλ̃m∆t is the initial guess

for the eigenvalue. Note that λ̃m comprises initial guesses
of the mth resonant frequency and mth damping coeffi-
cient. It has been observed that the magnitude of the dif-
ference between the qth and q+1th eigenvalue can be used
as a measure of convergence. Thus, the iteration may be
stopped before Q is reached, if |γ(q+1)

m −γ
(q)
m | ≤ τ , where

τ is a small, predefined value.
We must now provide initial guesses for the unknown

eigenvalues.

3.3 Initial eigenvalue guesses

Using well-reasoned initial guesses can aid in the identifi-
cation of valid eigenvalues, while also reducing the com-
putational effort by reducing the number of iterations. Ad-
ditionally, good initial guesses that reduce the number of
required iterations can help to keep the conditioning under
control.

One might obtain initial guesses in many ways. For
example, Mäkivirta et al. [7] estimate the resonant fre-
quencies from the resonant peaks in the short-term Fourier
transform of the transfer function, and estimate the damp-
ing coefficients by fitting an exponential decay model to
the decaying signal at each estimated resonant frequency,
as proposed by Karjalainen et al. [21]. This approach
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might be used when one is interested in estimating the
resonant frequencies and damping coefficients of specific
resonant peaks. Although, with the caveat that this ap-
proach might not find modes that, due to the coalescence
of closely spaced resonant peaks, are buried in the data.

Alternatively, with knowledge of the room’s geom-
etry, one might determine the resonant frequencies of
the undamped system. For example, when considering a
shoebox-shaped room there exists an analytical formula
for computing the undamped resonant frequencies [22].
More generally, if the geometry of the room is complex,
performing an eigenvalue analysis of the undamped room
can provide initial guesses.

For lightly damped rooms, the undamped and damped
resonant frequencies might be quite similar, in which case
good results might be obtained by using the undamped
resonant frequencies as initial guesses. However, it cannot
always be expected that the undamped and damped reso-
nant frequencies will lie close to each other in the com-
plex plane. In such cases, initial guesses of the damping
coefficients can also be utilized to improve estimates. The
method provided by Karjalainen et al. [21] can be used to
obtain good estimates.

In this work, eigenvalue analysis of the undamped
room, and damping coefficient estimation from a room
impulse response [21], are used to generate initial guesses.

3.4 Signal reconstruction

The eigenvalue estimates are found using Eq. (6) with the
solutions of Eq. (14). Eq. (2) can then be rewritten to esti-
mate the unknown amplitudes, i.e.,

ã = E†h . (15)

The signal can be reconstructed from the real part of
Eq. (2) with am = ãm. In scenarios for which there is
no reference data, reconstructing the signal and compar-
ing it to the original signal can serve as a sanity check that
the estimates are reasonable. Since the reconstruction will
have a limited number of eigenvalues, comparison of the
transfer functions rather than the time-domain signals can
sometimes be more informative.

4. EIGENVALUE ESTIMATION

We now demonstrate the performance of the RQMPM, us-
ing both simulated and measured data. Using simulated
data gives us access to reference eigenvalues, with which

we can verify the approach. However, when using mea-
sured data, we do not have access to any reference eigen-
values. Instead, we infer the validity of the approach by
reconstructing the measured signal.

4.1 Test case and setup

Both the simulated and measured data are obtained from
the same room. A model of the room is shown in Fig. 3. It
can be seen that the room’s geometry is complex. A loud-
speaker is placed in one corner of the room, and simulated
and measured impulse responses are obtained at the same
randomly chosen position within the room.

Figure 3. Geometry of room under test. The source
is located close to the coordinate system origin.

For the construction of the matrix pencil from the
simulated and measured impulse responses, we use
p = round(N/2). To reduce computational effort, for the
generation of the matrix pencil from the measured impulse
response downsampling is used. Assuming the geometry
of the room under test is known, the initial guesses for
the resonant frequencies are taken from a finite element-
based eigenvalue analysis of the hard-walled room. Initial
guesses of the damping coefficients are generated using
the method given by Karjalainen et al. [21].

4.2 Simulation

A uniform, frequency-independent normalized impedance
of 60 is imposed on all bounding surfaces of the room. We
choose a constant impedance because obtaining accurate
reference solutions for a frequency-dependent impedance
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cannot be guaranteed. A simulated room impulse re-
sponse has been generated using a Gaussian pulse with
a bandwidth of 300 Hz, a delay of 0.05 s, a sampling fre-
quency of 2 kHz, and a duration of 1 s (following the ap-
proach described by Prinn [23]). The simulated impulse
response is shown in Fig. 4.
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Figure 4. The simulated impulse response.

We estimate the eigenvalues of this impulse response
using Eqs. (13) and (14). Upon consultation of Fig. 5, it
can be seen that the eigenvalues are well estimated. How-
ever, the matrix pencil has failed to accurately capture all
of the eigenvalues. Note that the RQMPM estimates can
only be as accurate as the MPM estimates. Thus, the dis-
crepancy seen here is an inherent limitation of the matrix
pencil estimation. The RQMPM has avoided many of the
spurious MPM estimates.

Shown in Fig. 6 is a reconstruction of the simulated
transfer function. Only eigenvalues below 120 Hz have
been estimated, which explains the missing peak above
120 Hz in the reconstructed transfer function. Upon com-
parison with the reference transfer function, good agree-
ment is found.

4.3 Measurement

An impulse response is measured in the room with a sam-
pling frequency of 48 kHz and a duration of 2 s. The
signal-to-noise ratio is approximately 56 dB. For the ma-
trix pencil construction, the impulse response is down-
sampled by a factor of 35, as this reduces the computa-
tional effort while still providing good estimates.

For the experimentally obtained data, we do not have
access to reference values. Instead, the RQMPM esti-
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Figure 5. Comparison of the reference and estimated
eigenvalues of the simulated room. Note that only a
subset of MPM solutions is shown in this graph.
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Figure 6. Comparison of the simulated (reference)
and reconstructed room transfer functions.

mates are compared to the initial guesses and the MPM
estimates in Fig. 7. The RQMPM estimates are differ-
ent from the initial guesses, and it would appear that
the RQMPM approach has avoided many of the spurious
MPM estimates. In the absence of reference values, we
infer the validity of the estimates from a reconstruction of
the measured signal. A comparison of the reference and
reconstructed transfer functions, given in Fig. 8, indicates
that reasonable estimates have been found. Due to the
noise present in the measured impulse response, this is a
more challenging test of the method.
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Figure 7. Comparison of the initial guesses, the
MPM estimates, and the RQMPM estimates for the
measured room. Note that only a subset of MPM so-
lutions is shown in this graph.

Note that it has been found that better agreement be-
tween the reference and reconstructed transfer functions
can be obtained by analyzing impulse responses measured
at multiple positions in the room. The RQMPM estimates
can then be averaged to obtain improved eigenvalue esti-
mates. However, averaging has not been used here, and
the data presented is taken from one measured impulse re-
sponse only.

4.4 Discussion

The RQMPM does not always provide reliable solutions.
Depending on the quality of the MPM solutions and the
quality of the initial guesses, the approach might still find
a spurious eigenvalue. It is unclear how this might be
avoided, and further investigation is required. However,
if multiple measurements are used in a controlled set-
ting, e.g., a reverberation chamber, in which good initial
guesses are available from an a priori analysis, it is ex-
pected that good eigenvalue estimates can be obtained.

One further issue that might arise is the estimation of
repeated eigenvalues. This is an indication that two eigen-
values are similar in value and, thus, that an eigenvalue
has been missed. A simple remedy is to run the estimator
again, twice. Once with an initial guess that is lower than
the repeated estimate and once with a guess that is higher.
If the repeated estimation does not find a new eigenvalue,
then an eigenvalue may be missing from the solution set.
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Figure 8. Comparison of the measured (reference)
and reconstructed room transfer functions.

5. CONCLUSION

Of the many eigenvalue estimation methods available, the
matrix pencil method provides good estimates. However,
these good estimates are accompanied by spurious esti-
mates. In practical settings, it is difficult to determine
which solutions are valid estimates and which are spuri-
ous. In this work, Rayleigh quotient iteration has been
used to solve the eigenvalue problem formulated by the
matrix pencil approach. The matrix pencil has been re-
derived to arrive at initial guesses of the eigenvectors and
eigenvalues required for the iterative procedure. The use
of Rayleigh quotient iteration has been tested on simulated
and measured data. In both cases, the estimates obtained
have been used to reconstruct the transfer functions of the
input signals. The agreement obtained between the ref-
erence and reconstructed room transfer functions implies
that the proposed approach can provide reliable estimates
of room mode frequencies and damping coefficients.

Future work should focus on advanced methods for
identifying and removing spurious eigenvalues from the
MPM solutions.
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