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1 Fraunhofer IIS, Erlangen, Germany
2 International Audio Laboratories Erlangen†, Germany

ABSTRACT

For computational room acoustics, accurate surface
impedance data is needed to generate computational mod-
els that aim to provide accurate predictions. However, ob-
taining complex-valued frequency-dependent impedances
of an acoustically absorbing material at low frequencies is
a challenging task. In point of fact, the current measure-
ment standard ISO 354:2003, which describes the mea-
surement of absorption coefficients (which can be related
to impedance) in a reverberation chamber, states that it
is difficult to obtain reliable data below 100 Hz. There
is therefore a need for advanced low-frequency measure-
ment techniques. This paper presents a validation of a re-
cently proposed eigenvalue-based inverse method for esti-
mating locally reacting impedances at modal frequencies.
The proposed method is validated using data measured
in an impedance tube. This method can be used to esti-
mate the sample impedance in reverberant rooms at low
frequencies.

Keywords: Impedance estimation, Eigenvalue anal-
ysis, Finite element method, Low frequency.

*Corresponding author: albert.prinn@iis.fraunhofer.de
†A joint institution of the Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU) and Fraunhofer IIS, Germany.

Copyright: ©2023 Prinn et al. This is an open-access article
distributed under the terms of the Creative Commons Attribu-
tion 3.0 Unported License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original
author and source are credited.

1. INTRODUCTION

For a valid computational acoustic model to provide faith-
ful predictions, the input parameters must be accurate
(see, e.g., Refs. [1–6]). For interior acoustics simulations,
accurate descriptions of source characteristics, room ge-
ometry, and room surface impedances are required. Ob-
taining accurate impedance descriptions of material sam-
ples at low frequencies is a challenging task, which of-
ten requires the use of dedicated setups, for example,
the measurement of a sample in a specially designed
impedance tube (e.g., Ref. [7]). While the impedance
tube does provide accurate measurements, it is of lim-
ited use when attempting to measure the impedances of
acoustically absorbing materials that are already installed
in a room. In such cases, one may consider measure-
ment in a reverberation chamber; However, this measure-
ment method provides Sabine absorption coefficients, not
complex-valued impedances, and it is not reliable at low
frequencies [8] due to measurement uncertainty (see, for
example, Wittstock [9]). In this paper, a method recently
proposed by the current authors for estimating complex-
valued impedances at modal frequencies [10] is validated
using impedance tube measurements.

Various similar methods can be found in the litera-
ture. Dutilleux et al. [11] present a boundary inverse in-
terior problem and apply it to the estimation of complex-
valued impedances at low frequencies in a room. Use is
made of the finite element and finite difference methods,
and promising solutions are obtained in a set of simulated
problems. Anderssohn and Marburg [12] also make use
of the finite element method to estimate complex-valued
admittance. Nonlinear optimization is used to obtain non-
uniform, frequency-independent surface admittance esti-
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mates in a simulated car cabin. Nava et al. [13] present an
inverse method based on the boundary element method.
They estimate the complex impedance of samples placed
in a small chamber. The method is validated by show-
ing that the error between the measured and simulated
pressure fields is small. Bockman et al. [14] present a
Bayesian impedance estimation method. The method is
validated using impedance tube measurements.

An eigenvalue-based impedance estimation method
is given by Hull and Radcliffe [15]. They estimate the
impedance of a sample of foam in an impedance tube us-
ing an analytical description of the eigenvalues of a rigid-
walled impedance tube terminated by an absorbing sur-
face. Good results are found with measured data. More re-
cently, Nowakowski et al. [16] estimate impedance using
the measured eigenmodes of a system under test. Good re-
sults are obtained for a simulated, two-dimensional prob-
lem. For the interested reader, an informative review
of in-situ impedance measurement methods is given by
Brandão et al. [17].

All the methods described above (except for Hull
and Radcliffe [15]) make use of optimization to obtain
impedance estimates; This is because these works esti-
mate non-uniform impedances. While the method con-
sidered here can be combined with an optimization rou-
tine, as shown by Prinn et al. [10], in this work, a uni-
form sample impedance is estimated, with the result that
optimization is not needed. As input data, the method re-
quires knowledge of the geometry of the system under test
and an impulse response measured at a single position. In
this work, the finite element method is used to assemble
the system matrices, which are then used to estimate the
impedance of a sample in an impedance tube.

The remainder of this paper is organized as follows.
In Sec. 2, an overview of the proposed impedance esti-
mation method is presented. In Sec. 3, the measurement
setup and estimates of the complex-valued impedance of
a sample are presented. The method is further discussed
in Sec. 4, and the paper is concluded in Sec. 5.

2. IMPEDANCE ESTIMATION METHOD

The proposed impedance estimation method [10] is briefly
reviewed in this section. The method comprises two parts:
(1) complex-valued eigenvalues that identify the modal
frequencies and modal damping coefficients of the system
under test are measured or estimated, and (2) an inverse
eigenvalue-based problem of the system is solved to pro-
vide estimates of a sample’s locally reacting impedance.

2.1 Eigenvalue estimation

In this work, the eigenvalues are estimated using the ap-
proach described by Prinn et al. [18]. For conciseness,
the approach is only briefly described here. The eigen-
values are estimated using the matrix pencil method [19].
This method accepts an impulse response and generates
and solves an eigenvalue problem. A set of candidates for
the eigenvalue estimates, λ̂, is then available. However, al-
though the matrix pencil method provides good estimates,
it also provides a significant number of spurious solutions
(see, e.g., Refs. [18, 20, 21]). The spurious solutions must
be identified and removed if one is to obtain a set of valid
solutions. The approach used in this work to remove the
spurious solutions is described in Sec. 3.2.2.

2.2 Impedance estimator

To estimate the impedance, two eigenvalue systems are
constructed: a first that models the measurement system
with known impedance, and a second that models the sys-
tem with an unknown sample impedance. If the eigen-
modes of a given system are weakly coupled, an eigen-
value of the second system can be approximated using the
formula
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where C, and M are damping and mass matrices, λj and
vj are the jth eigenvalue and eigenvector, and superscripts
(0) and (1) identify the first and second system, respec-
tively. A full derivation of Eq. (1) can be found in the
article by Prinn et al. [10]. Note that the damping matrix
includes a c−1 term, and the mass matrix includes a c−2

term, where c is the speed of sound. The subscript j is
omitted for brevity from this point onward (except where
needed).

We proceed by writing the damping matrix of the sec-
ond system as

C(1) = ζ−1
s C(1)

s + ζ−1
w C(1)

w + ζ−1
z C(1)

z , (2)

where subscript s represents a source’s surface, subscript
w represents a wall’s surface, and subscript z represents
an impedance sample’s surface. Assuming the estimated
eigenvalues λ̂ (cf. Sec. 2.1) are valid estimates of λ̂(1),
Eq. (1) can be rewritten to give an estimate for an un-
known impedance at the jth mode. For example, when
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the impedances at the source and wall are known, the sam-
ple’s impedance is approximated by

ζ̂z =
λ̂(1)
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where

S0 = C(0) + 2λ(0)M , and ,
S1 = ζ−1

s C
(1)
s + ζ−1

w C
(1)
w + 2λ(0)M .

(4)

Noting that Eq. (1) provides only approximate eigenval-
ues, the impedance estimates obtained can be used to it-
eratively refine the estimates given by Eq. (3), i.e., the
impedance estimates from a previous iteration step are
used to generate new eigensolutions, λ(0)j and v

(0)
j , for

the current iteration step. To reduce computational ef-
fort, Rayleigh quotient iteration can be used to generate
the new reference eigensolutions. For conciseness, this
approach is not described here – for a detailed description
of the iterative approach, see Prinn [22].

The geometries considered in this work are dis-
cretized using tetrahedral meshes, which are generated by
Gmsh [23]. The finite element method is used to gener-
ate the damping and mass matrices. Quadratic interpo-
lating functions are used, with a nodal spacing that en-
sures 10 degrees of freedom per wavelength at the high-
est frequency of interest. Note that the impedance esti-
mation method does not require the use of the finite ele-
ment method - any method capable of generating stiffness,
damping, and mass matrices may be used.

3. IMPEDANCE TUBE

An impedance tube was used to measure the complex-
valued impedance of a material sample. In this section,
the measurement is described, and the measured and esti-
mated impedances are compared.

3.1 Measurement setup

An impedance tube with length L = 1.038 m and di-
ameter d = 0.1 m was used. A schematic of the
impedance tube is shown in Fig. 1. The measurements
were performed according to the measurement standard
ISO 10534-2 [24]. For the measurements, three micro-
phones were placed inside the tube. However, for the
impedance estimations presented in what follows, only
one microphone is used. The position of the microphone
used for the estimations is indicated in Fig. 1.

sound source

test sample

rigid backing

1.038 m
0.838 m

0.05 m

0.1 m
microphone

Figure 1. Schematic of the impedance tube (not to
scale). The dashed lines indicate a sound insulat-
ing box with undefined dimensions, and unknown
impedance.

Two impulse responses were measured in the tube.
The first is that of the empty tube, the other measurement
was made with the test sample installed in the tube. The
measured impulse responses are shown in Fig. 2. Longer
impulse responses were measured, but for the eigenvalue
estimation the impulse responses are truncated to reduce
the computational effort.

The sample is a foam made of melamine resin. It has
a cylindrical height of 50 mm, and a weight of 3.7 g. The
measured complex-valued impedance and absorption co-
efficients of the sample are presented in Sec. 3.2.4.

0 0.02 0.04 0.06 0.08 0.1 0.12

Figure 2. Measured impulse responses of the empty
and occupied impedance tube.

3.2 Estimates

In this section, the estimates computed from the measured
impulse responses are presented. Estimates of the speed
of sound, the system eigenvalues, and the impedances of
the empty tube and the occupied tube are presented.
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3.2.1 Speed of sound estimation

The speed of sound was not recorded at the time of the
measurement. Instead, it was estimated from the im-
pulse response measured in the empty tube. First, the
arrival times of the direct sound and the first four reflec-
tions are determined. The average travel time between the
peaks, 〈t〉, is then used to estimate the speed of sound:
c = 2L/ 〈t〉. Using this procedure, we estimate that the
speed of sound is c = 344 m/s. This value is used in the
remainder of this work.

3.2.2 Eigenvalue estimates

Due to the simplicity of the impedance tube problem (i.e.,
planes waves traveling along a cylindrical duct, and thus
clearly separated peaks in the transfer function), the fol-
lowing approach is adopted for estimating the eigenval-
ues:

1. peak finding is performed on the transfer func-
tion (given by Fourier transform of the impulse re-
sponse) to identify candidate modal frequencies,

2. the modal frequencies of a rigid walled version of
the impedance tube (idealized as a cylindrical duct)
are computed analytically, and used to refine the set
of candidate modal frequencies,

3. for each candidate modal frequency, f , a related
damping coefficient, σ, is computed, using the
short-time Fourier transform and the approach pre-
sented by Karjalainen et al. [25],

4. the estimated modal frequencies and damping co-
efficients are combined to give a set of initial esti-
mates for the eigenvalues, λ0 = i(2πf + iσ), and

5. the matrix pencil is constructed, and the initial
guesses are used to perform Rayleigh quotient it-
eration to find a set of candidate eigenvalues, λ̂,
following Ref. [18].

The estimated eigenvalues are presented, in terms of
modal frequencies and damping coefficients, in Fig. 3. Es-
timates are given for both the empty and occupied con-
ditions of the tube. The empty tube does not have rigid
walls; This can be inferred from the significant decay of
its impulse response (see Fig. 2) and is further evidenced
by the non-zero damping coefficients (Fig. 3). It is as-
sumed that this damping is located at the source side of
the tube, and thus that the duct wall and rigid backing have
high impedances. The rigid walled modal frequencies are
compared to the estimated modal frequencies of the empty
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Figure 3. Estimated modal frequencies and damping
coefficients of the empty tube, and the occupied tube.

tube in Tab. 1. There is a notable change in modal fre-
quency. For example, the fundamental frequency of the
rigid walled tube is 165.7 Hz, while the fundamental fre-
quency of the empty tube is 174.58 Hz. In general, the
sample in the tube causes significant changes to the modal
frequencies and damping coefficients. In the next section,
we use the estimated eigenvalues to estimate the complex-
valued impedances of the source side of the empty tube.

Table 1. Comparison of computed rigid walled tube
modal frequencies, and estimated empty tube modal
frequencies.

mode number rigid tube empty tube

1 165.70 174.58
2 331.41 338.44
3 497.11 502.95
4 662.81 667.99
5 828.52 833.53
6 994.22 999.18
7 1159.92 1165.55
8 1325.63 1331.47
9 1491.33 1497.52

10 1657.03 1663.68
11 1822.74 1829.95
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3.2.3 Empty tube estimates

It can be concluded from Fig. 3 that the modal damping
coefficients of the empty tube are not negligible. This is
expected, and is caused by the sound insulating box that
surrounds the speaker [26, Fig. 4]. Therefore, before we
can estimate the impedances of the sample, ζ̂z , we must
first estimate the impedance of the empty tube. It is as-
sumed, due to the consideration of a frequency range that
permits only plane waves, that the wall of the tube has an
infinitely high impedance, ζw =∞. It is further assumed
that the rigid backing at the sample end of the tube has
a normalized impedance of ζz = 1 × 103, based on the
following reasoning: the rigid backing should be acousti-
cally hard, but is unlikely to have infinite impedance, and
for ζz ' ×103 the error levels of the impedance estimates
(presented in Sec. 3.2.4) do not change significantly. The
impedance at the source end of the tube is now estimated,
by solving Eq. (3) for ζ̂s.

For the impedance estimations in the impedance tube,
ten iterations of the estimation are performed. For the first
iteration, the analytical solutions of the rigid duct are used:
λ
(ap)
j = icπj/L and v

(ap)
j = cos (jπx/L). Impedance

estimates from the tenth iteration are shown in Fig. 4.
The real part of the estimated impedance is small, and the
imaginary part is positive. It is this positive imaginary part
that causes the modal frequencies to shift upwards, when
compared to the modal frequencies of the rigid tube (cf.
Tab. 1). Shown in Fig. 5 are the corresponding absorption
coefficients. There is significant damping at the funda-
mental frequency and non-negligible damping in general.

These estimates are used to define the impedance at
the source side of the empty tube, i.e., ζs = ζ̂s, which
are in turn used to estimate the impedances of the sam-
ple in the next section. Note that the analytical method
described by Hull and Radcliffe [15] provides impedance
estimates of the empty tube that agree agree with those
presented in this section, with a relative error of 0.84 %.
However, the analytical method assumes that one end of
the impedance tube is totally reflective, and therefore, for
the problem considered here, the analytical method fails to
accurately estimate the impedances of the sample. Addi-
tionally, the analytical approach cannot be used for more
general measurement system geometries, e.g., a reverber-
ation chamber.

3.2.4 Sample impedance estimates

For each estimated modal frequency, the complex-valued
impedance is estimated by solving Eq. (3). At each of
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Figure 4. Estimated impedance of the source side
of the empty tube. This data is used to estimate the
sample impedance.
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Figure 5. Absorption coefficient of the estimated
empty tube impedance, shown in Fig. 4

ten iterations, the reference system is updated with the
current impedance estimate. The error of the estimated
impedance is computed using the formula

ηj = 100
|ζz(fj)− ζ̂z(fj)|
|ζz(fj)|

, (5)

where fj is the jth modal frequency. Cubic interpolation
is used to find the corresponding data points, ζz(fj), from
the measured data. The error incurred while estimating
the impedance for the sample is shown as a function of
iteration number in Tab. 2.
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Table 2. Impedance estimation error (in %) as a function of iteration number (it.).

modal frequency [Hz] it. 1 it. 2 it. 3 it. 4 it. 5 it. 6 it. 7 it. 8 it. 9 it. 10

163.70 19.62 7.17 7.20 7.20 7.20 7.20 7.20 7.20 7.20 7.20
319.44 209.10 58.43 1.29 0.77 0.77 0.77 0.77 0.77 0.77 0.77
476.91 59.11 4.09 3.36 3.36 3.36 3.36 3.36 3.36 3.36 3.36
636.43 29.61 2.97 3.06 3.06 3.06 3.06 3.06 3.06 3.06 3.06
796.79 24.97 4.57 4.03 4.03 4.03 4.03 4.03 4.03 4.03 4.03
948.92 34.19 15.85 14.45 14.44 14.44 14.44 14.44 14.44 14.44 14.44

1093.40 42.98 32.20 14.21 9.66 9.97 9.97 9.97 9.97 9.97 9.97
1262.03 38.35 53.41 9.65 8.05 7.33 7.39 7.39 7.39 7.39 7.39
1488.30 9.32 7.75 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85
1674.57 19.66 3.07 1.81 1.71 1.71 1.71 1.71 1.71 1.71 1.71
1831.59 12.09 6.10 7.18 7.14 7.14 7.14 7.14 7.14 7.14 7.14

We observe that the error remains constant after five
iterations. Impedance estimations (tenth iteration) for the
sample are compared to measured impedances in Fig. 6.
The impedance at the lowest modal frequency is poorly
estimated. It may be that the eigenvalue estimations (given
by the matrix pencil method) are not accurate enough,
or that the impedance estimate of the empty tube is not
accurate enough to accurately estimate this impedance.
Aside from this data point, the estimates tend to agree
with the measured data. An interesting phenomenon can
be seen in the estimates; Below approximately 1.5 kHz
the modal frequencies are shifted downwards, compared
to the rigid walled frequencies, while above 1.5 kHz the
modal frequencies are shifted upwards. This is caused by
the imaginary part of the impedance going from negative
to positive; It is a demonstration of the sample’s reactance.
Shown in Fig. 7 is a comparison of the measured and esti-
mated absorption coefficients. Good agreement is found.

While the estimates agree with the measured data, the
proposed method is no substitute for the impedance tube
measurement method in this frequency range. This is due
to the limitation that estimations can only be performed
at modal frequencies. However, the proposed method en-
ables estimates of complex-valued impedance below 100
Hz in reverberant spaces, which means impedance es-
timates can be obtained without specialized impedance
tubes.
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Figure 6. The measured and estimated impedance of
the sample, as a function of frequency.

4. DISCUSSION

While the results demonstrate that the proposed method
provides reasonable estimates of complex-valued
impedances, it does so only at modal frequencies.
However, for some applications, the proposed method has
a significant advantage, for example, when attempting
to measure complex impedance at low frequencies in a
reverberation chamber. If the impedance curve is smooth
enough, one might consider using polynomial or spline
fitting to generate continuous frequency data. Note, as
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Figure 7. Measured and estimated absorption coeffi-
cient data for the sample, as a function of frequency.

demonstrated by Prinn et al. [10], the size of the sample
does not appear to influence the impedance estimation.
Future work should consider using the method to measure
complex-valued impedance in a reverberation chamber.

Other applications of the proposed method can be en-
visioned. For audio applications, for example, it can be
beneficial to know the impedances of the surfaces of a
listening space. This is because reliable impedance in-
formation, along with geometry and source descriptions,
allows one to model the sound field throughout the listen-
ing space. In such cases, it might be sufficient to have
impedance estimates at the modal frequencies only, be-
cause the Q-factors of the transfer function peaks are de-
termined by the impedance at modal frequencies, and for a
given room the eigenvalues are not expected to change sig-
nificantly with slight changes to the listening environment.
Furthermore, this work demonstrates that the proposed
method can estimate the impedance of highly damped sur-
faces. In common listening environments (for example,
living rooms) the absorption coefficients of the acousti-
cally absorbing surfaces are typically low, which implies
surfaces that are not highly damped. Thus, it is expected
that the proposed method could be used to adequately es-
timate impedances in common listening environments.

One additional aspect that would need to be consid-
ered is the solution of spaces with non-uniform surface
impedances. For those types of problems, global opti-
mization routines might be used to provide useful esti-
mates. Alternatively, one might choose to estimate an av-
erage impedance for all surfaces in a room.

5. CONCLUSION

A method based on eigenvalue approximation that es-
timates complex-valued, frequency-dependent, locally-
reacting surface impedance at modal frequencies has been
validated using data measured in an impedance tube.

Future studies should consider the estimates of the
complex-valued impedances of samples measured in re-
verberation chambers. Additionally, problems with non-
uniform surface impedance might be tackled using a
global optimization routine. Finally, this method could be
improved by using an eigenvalue estimation method that
is more robust to noise than the matrix pencil method.
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