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ABSTRACT
Within the framework of a research focus at the TH
Rosenheim on prediction methods for sound and im-
pact sound insulation in timber constructions, methods of
mathematical statistics and artificial intelligence are ap-
plied to sound insulation. To estimate the potential of
those methods, one-third octave band spectra of measured
sound insulation of sand-lime brickwork have been an-
alyzed first. On selected data sets for certain building
constructions, physically based calculation approaches ac-
cording to the DIN EN ISO 12354 series of standards,
are compared with purely statistical methods such as
GAMLSS (Generalized Additive Models for Location,
Scale and Shape Parameters). The parameters derived
from these procedures can be used for prediction pur-
poses. The interval estimators resulting from these meth-
ods are compared. In addition, methods to classify the
separating construction based on measurements are dis-
cussed. Thereby, in situ, measurements are used in addi-
tion to laboratory measurements.

Keywords: artificial intelligence, mathematical statistics,
sound insulation, gamlss

1. INTRODUCTION

The sound reduction index R is a measure of the
frequency-dependent sound insulation of a wall. Physical
equations for the sound reduction index depend, among
other things, on the separating construction, the loss fac-
tor, and the longitudinal wave velocity. DIN EN ISO
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12354 [1] provides a variant of the physical sound reduc-
tion index. This paper investigates differences between
the DIN EN ISO 12354 sound reduction index R and mea-
sured laboratory data. For this purpose, the loss factor
and the longitudinal wave velocity are fit parameters. So
they will be derived from the data. The fitted parame-
ters are then compared with the suggestions from DIN EN
ISO 12354. These spectral curves are also compared with
spectral curves obtained from a purely statistical method
called GAMLSS. In addition, methods to classify the sep-
arating construction from measurement data are applied.
Finally, further ideas regarding this topic are discussed.
These are the estimation of unknown quantities and the
contribution to direct and flank transmission of in situ
measurements.

2. DATA

The in situ measurements of the sound reduction index are
just for classifying the construction of the building. All
other sections use laboratory data.

2.1 Laboratory data description

The laboratory data used in this paper are from a round-
robin test conducted by the Physikalisch-Technische Bun-
desanstalt (PTB). The data set consists of 24 test bench
measurements. In each case, a sand-lime brick 1 wall con-
sisting of equal batches of bricks with a thickness of 24 cm
and a mass per unit area of 440 kg

m2 was used as the sepa-
rating construction. [2] and [3] show a detailed description
of the laboratory experiments. The wall areas and the re-
spective aspect ratios are also available in the data.

1 Information on Sand-lime brick:
https://www.govinfo.gov/content/pkg/GOVPUB-C13-
e0a3f4809397be4cbfeb77507c673889/pdf/GOVPUB-C13-
e0a3f4809397be4cbfeb77507c673889.pdf
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Figure 1: Correlation of the sound reduction index
R between different one-third octave bands.

2.2 Laboratory data properties

The data is assumed to follow a normal distribution in
each one-third octave band. The Shapiro-Wilk test [4]
was used to check the distribution property because this
test is suitable for small sample sizes. To avoid the prob-
lem of multiple tests, [5] and [6] were considered. Figure
1 shows the correlation of the sound reduction index be-
tween the one-third octave bands. The darker or fuller the
field, the stronger the correlation. Blue indicates a positive
correlation, and red indicates a negative correlation. These
correlations are used later for bootstrapping and classifi-
cation.

2.3 Building measurement data

In addition to laboratory data, 18 data sets with sand-lime
bricks from field measurements are available. There are
also data sets with other building constructions provided;
16 data sets with brick 2 as construction material and 13
data sets with filling brick. 3 The brick walls have a thick-
ness of 36.5 cm, eleven filling brick walls have a thickness
of 24 cm, and the remaining walls have a thickness of 30
cm. Other parameters like aspect ratio or mass per unit

2 Brick information: https://www.gobrick.com/
3 Filling bricks are bricks with the addition of concrete filling

area are partly unknown. As before, the assumption of
normal distribution has been tested and can be accepted.

3. PHYSICAL MODELL

The selected physical model for the sound reduction index
R is based on DIN EN ISO 12354. Accordingly, R =
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is the total loss factor. Here
C√
f

describes the boundary loss. The radiation coefficient
σ and the radiation coefficient for forced waves σf are
implemented according to DIN EN ISO 12354, where σ
is limited to 1.18 and σf to two. Table 1 shows all other
occurring characteristics. Please note that the wall thick-
ness of 25 cm in Table 1 includes the plaster layer, while
the otherwise mentioned thickness of 24 cm ignores the
plaster layer.

4. PARAMETER ESTIMATION

4.1 Fit parameters

The goal is to estimate the longitudinal wave velocity cL,
the internal loss factor ηint, and the constant C from the
data. Therefore, cL, ηint, and C will be referred to as fit
parameters. Let θ = (ηint,C, cL) and R(f |ηint,C, cL) ≡
R(f |θ) be the previously defined physical sound reduc-
tion index R at frequency f with parameter vector θ.
Also, let yif ∈ R≥0 be the measured laboratory sound
reduction index R of the i-th wall at frequency f , where
i = 1, . . . , 24 and f ∈ {50, 63, . . . , 4000, 5000}.

The values for θ are obtained by solving the optimiza-
tion problem in equation (1), which is equivalent to min-
imizing the squared distance between the physical model
and the measured data.
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Table 1: Characteristics for the sound reduction in-
dex R.

Symbol Description Value

c0 Sound speed in air 340 m/s

Stot
Total surface in
reception room 85 m²

V Reception room volume 50 m³

Z0
Sound characteristic
impedance of air 400 Pa

m/s

m’ Mass per unit area 440 kg/m²
t Construction thickness 0.25 m
cL Longitudinal velocity Fit parameter
C Constant Fit parameter
ηint Internal loss factor Fit parameter
ρ0 Density of air 400

340 kg/m³
ρ Density of the material 1760 kg/m³

θ̂ := argmin
θ∈R3

≥0

24∑
i=1

∑
f

(yif −R(f |θ))2 (1)

θ̂η := argmin
(C,cL)∈R2

≥0

24∑
i=1

∑
f

(yif −R(f |C, cL))
2 (2)

θ̂C := argmin
(ηint,cL)∈R2

≥0

24∑
i=1

∑
f

(yif −R(f |ηint, cL))
2 (3)

If R(f |C, cL) := R(f |ηint = 1%,C, cL) and
R(f |ηint, cL) := R(f |ηint,C = 440/485, cL), then equa-
tions (2) and (3) are the optimization problems when the
internal loss factor ηint and C get a fixed value. Table 2
and DIN EN ISO 12354 show the corresponding values.
For the longitudinal wave velocity cL, DIN EN ISO 12354
only gives the value for the material and not for a sand-
lime brick wall. For this reason, optimization with fixed
longitudinal wave velocity is not performed.

The equations were solved using the programming
language R [7]. Therefore, the R package minpack.lm [8],
which uses the Levenberg-Marquardt algorithm, has been
applied.

4.2 Estimation results

Figure 2 compares the sound reduction index of a 24 cm
thick sand-lime brick wall between the values from DIN
EN ISO 12354 Table B.2 and the values after estimating

the three fit parameters from the data. Especially for low
and high frequencies, there is a big difference between the
DIN EN ISO 12354 values and the measured data. The
sound reduction index, whose fit parameters are derived
by equation (1) is relatively close to the mean value of the
data.

Figure 2: Comparison between the sound reduction
index of measured values (data), data mean, values
according to DIN EN ISO 12354 Table B.2, and the
spectral curve fit with three fit parameters.

Figure 3 shows the different spectral shapes of the
sound reduction index depending on whether all three fit
parameters or only two of them are estimated. The spec-
tral curve according to DIN EN ISO 12354 is omitted for
clarity.

To better compare these spectra, statistical distance
measures are needed. These measures indicate the dis-
tance between the measured data and the models. One
possibility is the RMSE (root-mean-square error) accord-
ing to equation (4). Note that the factor 1

24·21 is obtained
from the 24 buildings and 21 one-third octave bands. The
RMSE shows the root of the mean squared distance be-
tween the data and the model.

RMSE =

√√√√ 1

24 · 21

24∑
i=1

∑
f

(yif −R(f |θ))2 (4)

The RMSE has the disadvantage that it depends
strongly on the standard deviation of the data. Therefore,
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Figure 3: Comparison between the sound reduction
index of measurements (data), data mean, the spec-
tral curve fitting with three fit parameters, the spec-
tral curve fitting where ηint is fixed, and the spectral
curve fitting where C is fixed.

the normalized root mean squared error, or NRMSE, is
considered. Equation (5) defines the NRMSE at frequency
f , where ȳf := 1

24

∑24
i=1 yif . For the NRMSE, at a fre-

quency, the RMSE between the data and a model is di-
vided by the RMSE between the data and the data mean.
In the best case, NRMSEf = 1 holds; then the model R
passes through the mean ȳf at frequency f . The value
NRMSEf = 1 + a with a > 0 would mean that at fre-
quency f , the RMSE of this model is 100 ·a% higher than
for a model that passes through the mean.

NRMSEf =

√∑24
i=1(yif −R(f |θ))2∑24

i=1(yif − ȳf )2
(5)

The averaged NRMSEf according to equation (6)
can be used to compare the models. The interpreta-
tion is then similar to before the RMSE of the model is
100 · (NRMSE − 1)% higher on average than the RMSE
of a model that would pass through the data mean.

NRMSE =
1

21

∑
f

NRMSEf (6)

Figure 4 shows the NRMSE comparison for each fre-
quency between DIN EN ISO 12354 Table B.2 and the

estimation with three fit parameters. The NRMSE of the
fitted model is closer to one for each frequency. So the
fitted model describes the data for each frequency better
than the model according to DIN EN ISO 12354.

Figure 4: Comparison between the NRMSE of val-
ues according to DIN EN ISO 12354 Table B.2 and
the spectral curve fit with three fit parameters.

Figure 5 shows the NRMSE between the three-
parameter fit and the two-parameter fits. Of these three
models, the model with three fit parameters describes the
data best; however, in the frequency range above 2000 Hz,
the physical model improperly describes the sound reduc-
tion of thick plates and the associated other waveforms not
accounted for in the model.

Table 2 shows the results of the estimates. While the
DIN EN ISO 12354 gives the internal loss factor for sand-
lime brick as 0.01, the data estimate it to be 0.03; keeping
the constant C fixed, the estimated internal loss factor is
0.07. The constant C is m′

485 according to the DIN EN ISO
12354, where m’ is the mass per unit area. In our case,
m′ = 440 kg/m² holds, therefore m′

485 ≈ 0.91. The esti-
mated values for C are 2.13 and 2.68, respectively. The es-
timated longitudinal wave velocity values lie around 1000
m/s instead of 2500 m/s.

4.3 Interval Estimations

Previously, point estimates were applied. Now parametric
bootstrapping [9] derives interval estimates. Parametric
bootstrapping generates random vectors to estimate the fit
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Figure 5: Comparison between the NRMSE of the
fit with three fit parameters, the fit with fixed ηint, the
fit with fixed C, and GAMLSS.

Table 2: Estimated fit parameter. Values in bold
were estimated from the data.

ηint C cL RMSE NRMSE
Unit m/s dB
Norm 0.01 0.91 2500 5.27 1.86
3 par. 0.03 2.13 1046 3.11 1.07
ηint, fixed 0.01 2.68 1061 3.13 1.09
C, fixed 0.07 0.91 978 3.17 1.10

parameters and repeats this process an arbitrary number
of times. The random vectors must have similar statistical
properties as the data.

In our case, random vectors are generated with a 21-
dimensional normal distribution with mean vector µ and
covariance matrix Σ, in short, N21(µ,Σ). The expecta-
tion vector µ ∈ R21 contains the 21 means at the dif-
ferent frequencies, and Σ ∈ R21×21 contains both the
frequency-dependent variances on the diagonal and the
covariance between two different frequencies. Random
sampling generates 24 of these vectors to simulate 24 new
walls. This simulation of new measurement data is then
repeated B times to generate B possible fit parameters. In
our case, B = 1000 holds.

Table 3 shows the results of parametric bootstrapping.
Here, 95 % of the fit parameters lie between the 2.5 % and

Table 3: Parameter distribution after bootstrapping.

ηint C cL
Unit m/s

2.5-%-quantile 0.014 1.47 1001
25-% quantile 0.024 1.88 1030

Median 0.029 2.12 1043
Mean 0.028 2.15 1043

75-% quantile 0.033 2.39 1056
97.5-% quantile 0.041 2.97 1083

97.5 % quantiles, and 50 % lie between the 25 % and 75
% quantiles. Also, other quantities can be derived with
bootstrapping. For example, the estimated correlation be-
tween the internal loss factor and C is -0.8. This corre-
lation is plausible since the internal loss factor and C are
used to calculate the total loss factor. The correlation of
the remaining parameters will not be discussed further, as
it is only weak.

A nonparametric bootstrapping variant yielded almost
identical results.

5. GAMLSS

GAMLSS is short for Generalized Additive Model for
Location, Scale, and Shape. GAMLSS is a nonlinear
and semiparametric method and does not take the phys-
ical model as a basis sound reduction index R. Instead,
GAMLSS estimates a function from the data. This es-
timated function is composed piecewise of polynomials
[10].

Figure 6 compares the spectral curve of a GAMLSS
with the spectral curve from the physical with three fit pa-
rameters. Figure 5 shows that GAMLSS provides the best
result. However, GAMLSS does not result in a physical
interpretation.

6. BUILDING MATERIAL CLASSIFICATION

This section uses the laboratory data set from subsection
2.1 and the building data set from subsection 2.3. Four
separate constructions are available to calculate the sound
reduction index R. These are sand-lime brick, filling
brick, brick from the building measurements, and the pre-
viously used laboratory sand-lime brick data. The goal is
to detect the separating components with the help of the
sound reduction index. For this purpose, the classification
methods will be presented in the following three subsec-
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Figure 6: Comparison between the sound reduction
index of measurements (data), data mean, the spec-
tral curve fit with three fit parameters and GAMLSS.

tions to discuss the results in subsection 6.4. Also, let Cj

be the j-th construction in this section with j = 1, . . . , 4.

6.1 Naive Bayes Classifier (NBC)

The Naive Bayes Classifier is a simple approach based
on probability density functions. The goal is to
find the construction Cj that maximizes the prob-
ability density of Cj given the measured R val-
ues. The R or R′ value at a frequency f is noted
as rf , then argmaxj p(Cj |r50, . . . , r5000) is to be
found. With Bayes’ theorem p(Cj |r50, . . . , r5000) ∝
p(Cj)p(r50, . . . , r5000|Cj) holds, thereby ∝ specifies that
this equation is true except for negligible constants. The
Naive Bayes Classifier assumes that the measurements
for each frequency and each construction are indepen-
dent. Then p(r50, . . . , r5000|Cj) =

∏
f p(rf |Cj) is true

for each j. Note that this assumption is not appropriate
here because of the correlations shown in Figure 1, but
for this reason, the label naive is justified. p(Cj) defines
the prior probability often used in Bayesian statistics. As-
suming each construction is equally likely p(Cj) can be
ignored. Overall, the Naive Bayes classifier searches for
the Cj that maximizes the expression

∏
f p(rf |Cj), where

p(rf |Cj) is the probability density function of a normal
distribution at the frequency f of the construction Cj .

6.2 Quadratic Discriminant Analysis (QDA)

The Naive Bayes Classifier assumes that the measure-
ments between frequencies are independent. Figure 1
shows that the measurements are not independent due to
their correlation. Quadratic Discriminant Analysis takes
the covariance structure into account. Otherwise, this pro-
cedure works like the Naive Bayes Classifier, i.e., a new
sound reduction index spectral curve r ∈ R21 is classified
to maximize the expression in equation (7).

l(r|Cj) = − log |Σj | − (r − µj)
′Σ−1

j (r − µj) (7)

µj ∈ R21 and Σj ∈ R21×21 denote the expectation vec-
tor and covariance matrix of construction Cj , respectively.
The means of the corresponding measurements are the es-
timations of µj . The covariance matrices Σj must be in-
verted in (7), but the estimation with the Pearson method
are poorly conditioned and numerically problematic to in-
vert, see [11] page 100-104. Instead, the estimation with
the Ledoit-Wolf linear shrinkage estimator [12] is used.
The idea of the Ledoit-Wolf linear shrinkage estimator is
to find the optimal convex linear combination of the sam-
ple covariance matrix and the identity matrix. For further
information about QDA, see [13].

6.3 Support Vector Machine (SVM)

Support Vector Machine for binary classification creates a
hyperplane that separates the two classes as much as pos-
sible. In the case of more than two classes, each class
is tested against every other class, which is a so-called
one-against-one classification. The hyperplane is trans-
formed with a kernel function to learn non-linear relation-
ships. See [14] to find more details about Support Vec-
tor Machine. The R package e1071 [15] provides a func-
tion to apply SVM. The argument type was set to ”nu-
classification” while the rest was left as default.

6.4 Classification results

This subsection discusses the results of classification us-
ing the previously presented methods. Table 4 shows the
results when only in situ measurements were used, and Ta-
ble 5 shows the results using laboratory measurements. In
these tables, SL stands for building sand-lime bricks, FB
for filling bricks, B for bricks, and SLL for the laboratory
sand-lime brick measurements. The methods Naive Bayes
Classifier, Quadratic Discriminant Analysis, and Support
Vector Machine are abbreviated as NBC, QDA, and SVM,
respectively. The Acc column shows the relative number
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Table 4: Classification results: In situ measurements.

True Acc
Method SL FB B

Pr
ed

ic
tio

n

NBC
SL 14 3 0
FB 4 9 0 0.83
B 0 1 16

QDA
SL 17 3 0
FB 1 9 0 0.89
B 0 1 16

SVM
SL 17 3 0
FB 1 9 0 0.89
B 0 1 16

Table 5: Classification results: In situ and laboratory
measurements.

True Acc
Method SL FB B SLL

Pr
ed

ic
tio

n

NBC

SL 10 2 0 3

0.76FB 4 8 0 1
B 0 1 16 0
SLL 4 2 0 20

QDA

SL 15 2 0 1

0.87FB 0 8 0 0
B 0 1 16 0
SLL 3 2 0 23

SVM

SL 14 4 0 2

0.82FB 0 7 0 1
B 0 1 16 0
SLL 4 1 0 21

of correct classifications. The SL column of Table 4 can
then be read as follows: according to the Naive Bayes
Classifier method, sand-lime brick was correctly identi-
fied as such 14 times and incorrectly classified as filling
brick four times. The FB column shows that filling brick
was correctly identified by NBC nine times, classified as
sand-lime brick three times, brick once, and so on. The
values themselves were derived with leave-one-out cross-
validation (LOOCV). LOOCV means that for all methods,
all but one of the measured spectral curves were used to
train the models and then to classify the construction of
the omitted measured spectral curves.

Overall, the results show that it is possible to clas-
sify the construction based on the measurement spectral
curves. Especially with Quadratic Discriminant Analysis,
which showed an accuracy of 89 % for the construction

measurements and an accuracy of 87 % when laboratory
measurements were taken into account.

It is important to note that due to the data situation, it
is not clear whether the results are so promising because
the construction was recognized so well, or whether other
construction properties caused different spectral curves
and these were recognized. It should be noted that param-
eters such as the mass per unit area are unknown for the
construction measurements. To exclude that the methods
discriminate between the mass per unit area or other pa-
rameters instead of the construction, more data or a phys-
ical model for the building sound reduction index R′ is
needed to estimate the missing parameters.

7. CONCLUSION AND FUTURE WORK

The results show that the estimated loss factor and the lon-
gitudinal wave velocity do not agree with DIN EN ISO
12354-1 values. While DIN EN ISO 12354-1 assumes an
internal loss factor of 1%, C = m′

485 , and a longitudinal
wave velocity of cL = 2500 m/s, the estimated values lie
by approximately ηint = 3%, C = m′

207 , and cL = 1050
m/s. The NRMSE value of 1.07 for the model with esti-
mated values is much lower than the NRMSE of 1.86 for
the model with DIN values. A perfect value would be an
NRMSE of one, which means that the model runs through
the mean of the data. Wall area and side ratios were con-
sidered in the calculations, but they have a minor influence
on the sound reduction index.

To validate the estimated values, other models for the
physical sound reduction index R should be investigated
in the future, in addition to the model according to DIN
EN ISO 12354. The DIN EN ISO 12354 itself refers to
the work of [16], [17], and [18].

Naive Bayes Classifier, Quadratic Discriminant Anal-
ysis, and Support Vector Machine methods classified the
separating construction. Quadratic Discriminant Analy-
sis gives excellent results, with an accuracy of 89 % on
the building measurements and an accuracy of 87 % when
laboratory measurements are also taken into account.

Verifying whether the classification is based on the
component or on other factors is difficult. Therefore, in
the future, methods will be used to estimate unknown
quantities such as mass per unit area from the data. In
addition, it should be possible to distinguish between the
contribution of direct and flanking transmission of in situ
measurements.
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