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  ABSTRACT 

A mismatch between the outcomes of “classical” 
audiological tests and the perceived benefits of aided hearing 
impaired patients leads to an interest in more ecologically 
valid testing methods, more closely reflecting the patients’ 
performance in real-world situations. 
In daily-life, the living room constitutes a highly relevant 
indoor environment. Here, listening and speech 
communication typically involve different target or interferer 
sources, such as a TV set and/or talkers located on a chair or 
sofa in an adjacent room connected with an open door. 
This study compares such an ecologically relevant condition 
to anechoic audiological test conditions by testing speech 
intelligibility (German matrix sentence test) in two standard 
spatial configurations with frontal target and either 
collocated or 90-degree-separated masker (S0N0 and 
S0N90). Dummy head recordings of a controllable 
laboratory environment resembling an average German 
living room with an adjacent kitchen were used. Target and 
interferer positions were permuted over four different 
positions, including an acoustically challenging target 
speaker in the adjacent kitchen with obstructed line of sight. 
Speech recognition thresholds were measured with normal 
hearing listeners. Speech intelligibility in the living room 
with a target in the coupled room is more difficult than the 
standard collocated S0N0 condition. 
 
Keywords: virtual acoustics, speech intelligibility, coupled 
room, room acoustics, ecological validity. 

1. INTRODUCTION 

Hearing aids are designed to improve a person’s ability to 
hear and communicate in a variety of settings, including 

noisy environments and social situations. However, if the 
fitting process does not involve ecologically valid testing 

conditions, the hearing aid might not perform as expected in 
real-word situations. Hearing aid wearers might experience a 
mismatch between the proposed benefit of hearing aids and 
the benefit in real-life situations [1]. Therefore, the 
integration of acoustically challenging daily-life situations in 
laboratory-based testing can extend the ecological validity in 
hearing research [2] and hearing aid fitting, leading to an 
overall improved hearing aid benefit in everyday situations 
and environments. 
Virtual acoustic environments (VAE) offer the potential of 
more ecological valid testing in hearing research and 
audiology. Reproductions of real-world environments enable 
controllable and consistent ecologically valid measurements 
(e.g., [3]). VAEs have been used to increase the ecological 
validity in laboratory-based measurements in a number of 
studies [3 - 11]. Using VAEs, speech intelligibility has been 
measured in several simulated real-world conditions: in an 
office scenario [12], in a simulated cafeteria [3], in an 
underground station [13] and in a reverberant loft apartment
[14], including the comparison to the comparable anechoic 
condition (represented by the visual rendering of a snowy 
outdoor environment). 
Reverberation and masking by interfering sound sources are 
the two components that may affect speech intelligibility in 
challenging acoustic conditions. In real rooms, a complex 
mixture of direct sound, early reflections from different 
directions and late reverberation arrives at a listeners’ ear. 
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When target and noise sources are spatially separated, the 
listener can use binaural cues like interaural time delay (ITD) 
and interaural level difference (ILD) to selectively attend to 
the target sound and suppress the noise. Spatial release from 
masking (SRM) is based on ITD and ILD cues and describes 
how much the masking effect is when the target and the noise 
source(s) are separated in space in comparison to co-located 
target and noise. SRM has important implications for many 
everyday situations, such as having a conversation in a 
crowded restaurant. 
One highly relevant, typical acoustic communication 
environment for hearing impaired and normal hearing people 
is the living room [15-17]. Here, speech understanding might 
be interfered by other talkers or, e.g., the TV set, while 
acoustically challenging conditions might occur if the target 
talker is in an adjacent room with obstructed line of sight. 
Schulte et al. [17] assessed different challenging listening 
scenarios and found that the highest combined importance 
and occurrence ratings were given to following news 
broadcasts on TV, followed by situations where someone 
speaks to the listener from an adjacent room. 
In the current study, we focus on a direct comparison of 
speech intelligibility measures with simulated acoustic 
reproductions of a real living room environment, established 
as “living room lab” in the university building [18, 19] and 
audiological standard spatial configurations, to investigate 
the effect of room acoustics on speech intelligibility. 

2. METHODS 

2.1 Listeners 

Twelve normal hearing native German speakers (eight 
females, four males; aged 18–27 year) participated in the 
measurement. All participants were naïve to the test material. 
They had hearing thresholds for pure tones better than 20 dB 
HL at all audiometric frequencies between 125 and 8000 Hz. 
An hourly compensation was paid to the listeners for their 
participation in the measurement. 

2.2 Acoustic environment and conditions

A laboratory environment, resembling a typical German 
living room, was built at the University of Oldenburg. This 
living room lab (LRL; see also [18], [19]) consists of the 
living room (18.8 m²) and an adjacent smaller kitchen 
(10m²), both connected by a door. In the living room is a 
seating group, a sofa table, a carpet, a TV and a TV board 
among other furniture. A floorplan of the lab environment is 
shown in Fig. 1. 

The receiver was positioned at R1, seated on the couch. The 
target was presented from three different positions: from 
directly in front of the receiver (S-TV), from the right of the 
receiver on a chair (S5), or from the coupled room with 
obstructed line of sight (S7). An interfering sound source 
(masker) was presented from a fixed position on the sofa 
chair at S4. 
Two standard audiological, anechoic spatial configurations 
with frontal target and either collocated or separated masker 
at a side (S0N0 and S0N90) were compared to the three more 
ecologically valid conditions in the living room. 
Acoustical reproductions, based on measured binaural room 
impulse responses (recorded using a G.R.A.S KEMAR type 
45BM head and torso simulator and Genelec 8030C 
loudspeakers; sampling rate 44.1 kHz) of the LRL were used 
in the measurement. The reverberation time of the living 
room lab with open door is ��� = 0.56 s and the early decay 
time is EDT = 0.46 s.  

Table 1. Binaural levels for left and right ear (see left 
and right column, respectively) at receiver position R1 
with the measured BRIRs convolved with the speech 
shaped OLnoise from the source positions STV, S4, S5 
and S7. 

Position Level (dB) 
STV 65.02 64.97 
S4 66.04 64.19 

 
 

Figure 1. Floorplan of the living room lab at the 
University of Oldenburg. The receiver is positioned on 
the sofa, indicated by the head symbol R1, the masker 
is at position S4 (shown in blue), and the target is 
positioned either at STV, S5, or S7 (green). 
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S5 64.60 65.76 
S7 55.99 54.10 

 
For the standard spatial configurations (S0N0 and S0N90), 
the MK2-database was used, which was obtained with the 
same measurement set-up as presented in [20]. 

2.3 Apparatus and procedure 

Speech intelligibility (50% speech recognition threshold, 
SRT) was measured using the AFC framework [21] with the 
OLSA matrix sentence test [22] in the presence of a 
stationary speech-shaped noise (OLnoise) [23]. For the 
standard spatial configurations, the masker level was fixed at 
65 dB SPL and the level of the target was varied depending 
on the number of the correctly identified words. For the 
living room, the STV source was calibrated to 65 dB at the 
receiver position (averaged across both ears; see Table 1). 
For the other source positions, the levels varied (see Table 1) 
according to the room acoustics. For the SRTs, signal-to-
noise ratios (SNR) at the ears are reported.  
The stimuli were presented via Sennheiser HD 650 
headphones. The measurements were carried out in a double-
walled, sound attenuating hearing booth. No head-tracking 
was used in the binaural rendering, therefore head 
movements were not considered.  
Participants used a Matlab interface to mark the words (ten 
options for each word), which they had understood from the 
sentence. The participants started with a training condition, 
which was not used in the main listening test. 

3.  RESULTS 

Results for the three conditions in the LRL and the two 
standard spatial audiological test conditions are represented 
in Fig. 2. The mean SRTs and the corresponding standard 
deviations, averaged across all 12 participants, are shown. 
The lowest SRT score was obtained for S0N90. The highest 
SRT value was obtained for S7, the target position in the 
coupled room. A one-way, repeated-measures ANOVA 
(analysis of variance) revealed statistically significant 
differences between all measurement conditions, except for 
STV and S0N0. 

4. DISCUSSION 

With co-located target and interfering source, speech 
intelligibility is lower compared to conditions, where target 
and masker are spatially separated. This SRM has been 
earlier reported by several studies (e.g., [24-26]) and is also 
clearly visible in the current anechoic, audiological test 

conditions: S0N0 with collocated masker shows 
considerably higher SRTs compared to S0N90 indicating a 
profound SRM of about 9 dB. 
Regarding the LRL conditions, the target position S5 has the 
lowest SRT of the three conditions, in line with the largest 
angular separation and distance between masker and target 
of the living room conditions. The target position STV is a 
bit more challenging in comparison to S5. This is mainly 
caused by the smaller spatial separation between STV and 
the masker position S4. The highest SRT, and therefore the 
most challenging condition, is S7. In this case no direct sound 
reaches the receiver position from the connected kitchen 
room, and only reflections and reverberated diffracted sound 
reach the receiver due to the occluded position of the source. 
Additionally, the angular separation between the door and 
the masker S4 masker position is quite small, observed from 
the receiver position. This likely reduces SRM for the sound 
components coming from the door opening. Moreover, S7 is 
the condition with the largest distance between receiver and 
target. A considerable decrease in speech intelligibility for 
room-in-room conditions has been reported [27], compared 
to single rooms with the same T30 and same total distance. 
The audiological test condition S0N90 resulted in the lowest 
SRTs, indicating a large SRM and the anechoic presentation. 

5. CONCLUSION 

In this study we compared SRTs from standard audiological 
test conditions in an anechoic environment with spatially 
collocated or separated target and masker to a more 

 
 

Figure 2. Average speech recognition thresholds and 
standard deviations across participants for the five 
different measurement conditions STV, S5, S7, S0N0 
and S0N90. 

3385



10th Convention of the European Acoustics Association 
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino 

 

 

ecologically valid set-up with different spatial configurations 
in a living room. The reverberation of the (coupled) room 
increased the SRT scores. For the target in the adjacent 
kitchen room, with an obstructed line of sight, higher SRTs 
than for the unnatural anechoic colocated conditions were 
observed. The living room lab thus provides natural, 
challenging conditions requiring a relatively high signal-to-
noise ratio at threshold. Such ecologically valid conditions 
are particularly relevant for assessing hearing aid 
performance. 
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