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ABSTRACT* 

Laryngeal imaging is widely used to investigate anatomical 
and physiological aspects of voice production. Laryngeal 
high-speed videoendoscopy (HSV) is a laryngeal imaging 
technique and a powerful tool enabling us to capture the 
vibratory details of vocal folds in each cycle of vibration. 
HSV is specifically useful for studying voice production in 
connected speech, where non-stationary and transitory 
behaviors of vocal folds are consistently observed. This 
capability of HSV becomes more valuable when studying 
voice disorders, which involve more irregular and non-
stationary behaviors of vocal folds. In this work, HSV is 
used to study neurogenic voice disorders and compare them 
with normophonic voices. The HSV data were obtained 
from the speakers during production of connected speech. 
The data were collected using a monochrome high-speed 
camera coupled with a flexible nasolaryngoscope. The 
dataset for each participant contains hundreds of thousands 
of images, therefore, machine learning is used for the 
analysis of this big dataset. The results show that the 
machine learning approach is successful in the analysis of 
HSV data with high levels of accuracy. This tool can be 
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used to capture different vibratory features of vocal folds 
during different instances of voice production helping us 
characterize the normal and disordered function of voice. 
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speed videoendoscopy, neurogenic voice disorders, 
connected speech 

1. INTRODUCTION 

Production of the human voice is a unique task that 
involves the interactions of multiple speech subsystems, the 
most important of which being the phonatory subsystem 
[1]. The phonatory system, also referred to as the larynx is 
the origin of vocalization during speech [2]. 
Videostroboscopy is a widely-used technique to visualize 
the larynx and the vibrations of the vocal folds in clinical 
settings [3]. This technique consists of an endoscope 
coupled with a stroboscopic light and a video camera. 
While videostroboscopy is useful in the observation of 
vocal fold vibrations, it fails to capture the intracycle 
vibrations of the vocal folds and relies on periodic 
vibrations of the vocal folds [4]. In the observation of voice 
disorders, which frequently involve irregular cycles of vocal 
fold vibration, the limitation of videostroboscopy is more 
noticeable. 
Laryngeal high-speed videoendoscopy (HSV) is an 
advanced endoscopy tool that overcomes the limitations of 
videostroboscopy [5-6]. The HSV system allows for the 
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observations of thousands of frames per second (fps) from 
the vocal fold vibrations whereas the frame rate of 
videostroboscopy is only 30 fps. The high frame rate of the 
HSV system allows for detailed images of the vocal folds 
during their vibrations [7-8]. Recent advancements have 
allowed for the coupling of HSV with a flexible endoscope, 
enabling us to observe the vocal fold vibrations during 
connected speech [9-10]. While the HSV recording allows 
for a large dataset of images, reviewing hundreds of 
thousands of HSV images can be a tedious task without a 
fast and automated tool. To this end, there is a need to 
develop automated tools based on artificial intelligence or 
machine learning for the analysis of the HSV images. 
Deep neural networks (DNNs) are artificial 
intelligence algorithms that have been used for the detection 
of the edges of vocal folds in sustained phonation [11-15]. 
However, voice disorders should be more thoroughly 
studied during production of connected speech and not 
sustained vocalization [16-17]. Hence, our previous 
research utilized DNNs to detect vocal fold edges using 
HSV images during connected speech [18-20]. In the most 
recent work, the DNN was tested for the detection of the 
vocal fold edges during connnected speech for a subject 
with adductor laryngeal dystonia and showed highly 
accurate  results [21]. Adductor laryngeal dystonia is a 
neurological voice disorder in which the laryngeal muscles 
are impacted causing a strained, strangled, and broken vocal 
quality in patients [22-23]. Due to its similarity to other 
voice disorders, e.g., vocal tremor, laryngeal dystonia 
misdiagnosis is common [24]. As the effetcs of laryngeal 
dystonia are most often elicited during connetced speech 
[25], the use of DNNs may lead to more accurate diagnosis 
of the disoder and proper trearment outcomes and better 
patient satisfaction in future [26]. 
The goal of this study is to use the DNN from the previous 
study [21] on other normophinc subjects, patients with 
adductor laryngeal dystonia, and other neurogenic voice 
disorders including unilateral vocal fold paralysis, vocal 
fold paresis, and and vocal tremor. Vocal tremor is marked 
by modulations of the laryngeal muscles in a periodic 
manner that cause fluctuations in the fundamental 
frequency of the voice during speech [27]. Individuals with 
unilateral vocal fold paralysis often suffer from an increased 
vocal effort and changes in vocal quality during speech [28-
29]. Those with vocal fold paresis suffer from hypomobility 
of the vocal folds, which might present as increased vocal 
effort, dysphonia, or even loss of higher registers [30]. 
While the underlying etiologies of these disorders may 
differ, machine learning could provide a useful tool to 
understand the mechanisms of these neurogenic voice 
disorders [31-33]. The results of this study will aide in the 

generalization of the developed machine learning methods 
(using DNNs) to study these voice disorders using HSV in 
connected speech. 

2. METHODS 

2.1 Data Collection  

In this study, the data were collected from 34 participants 
between the ages of 35-76 years old. The participants 
consisted of 19 normophonic subjects (11 female and eight 
male) and 15 patients with neurogenic voice disorders (11 
female and four male). Among the patients, four (three 
female and one male) had unilateral vocal fold paralysis, six 
(five female and one male) had adductor laryngeal dystonia, 
four (three female and one male) had vocal tremor, and one 
male had vocal fold paresis. A Photron FASTCAM mini 
AX200 monochrome high-speed camera (Photron Inc., San 
Diego, CA), coupled with a flexible nasolaryngoscope was 
used for the data collection. The HSV recording was done 
at 4,000 fps (resolution of 256x224 pixels) while the 
participants were reading the Consensus Auditory-
Perceptual Evaluation of Voice (CAPE-V) [34] sentences 
and the Rainbow Passage [35]. 

2.2 Data Analysis 

This study used a trained DNN model based on the U-Net 
architecture in MATLAB 2020b [21]. The block diagram of 
the DNN is shown in Figure. 1. The orignal DNN was 
trained using HSV data from three normophonic and three 
patients with adductor laryngeal dystonia. The training was 
done to classify the pixels in each frame into the 
background or glottal area pixel. As the block diagram of 
the DNN model in Figure 1 shows, the inputs to the model 
included a series of manually labeled frames as performed 
by two experienced raters. In total, the raters manually 
segmented 738 frames of HSV images that were 
representative of different laryngeal maneuvers (i.e., 
abducted and adducted vocal folds and vocal fold 
obstruction by different tissues). After the manual 
segmentation, 80% of the frames were used for training, 
and 20% were used for validation. Furthermore, the trained 
DNN was visually evaluated on a testing set of images by 
two raters. The output of this diagram represents the 
automatically generated masks obtained by the network. 
The U-Net model encoded the HSV frames to create image-
based feature maps through several convolutional layers 
followed by rectified linear unit activation functions and 
2x2 max pooling for downsampling (with stride two). 
These features were then used in the decoder path 
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consisting of transposed convolutional layers followed by 
rectified linear unit activation functions and a soft-max 
function to create a segmentation mask for each frame. The 
segmentation mask was a binary image in which the glottal 
area pixels have the intensity of one and the background 
pixels have the intensity of zero. The training of the 
network was done using Adam optimizer. This network 
was trained and retrained several times by considering a 
different number of layers in the decoder-encoder parts of 
the DNN and using different batch sizes, epochs, and 
learning rates for retraining. Retraining was performed to 
ensure that the best performing network will be used for the 
segmentation of the vocal folds and creation of the 
segmentation masks. 
 

 
Figure 1. Block diagram of the DNN showing the 
process of training, validation, and testing of the 
network. 

Based on the DNNs with different structures, the best 
performing network was selected. The network was tested 
on HSV data of a subject with adductor laryngeal dystonia 
and the model’s performance was evaluated. The trained 

DNN model was then applied to subjects with other voice 
disorders that were not included during the training of the 
network. The performance of the DNN was then evaluated 
visually for these additional subjects. Two experienced 
raters analyzed the automatically created segmentation 
masks and compared them with the HSV frames t hat were 
adjusted using a Gaussian filter and by changing the 
brightness and gamma values. 

3. RESULTS 

A sample of the HSV frames capturing different laryngeal 
configuration/postures are shown in Figure 2. This figure 
shows 12 frames, selected from subjects with different 
voice disorders. The frames from the left to right columns 
belong to the following disorders, respectively: adductor 
laryngeal dystonia, vocal tremor, unilateral vocal fold 
paralysis, and vocal fold paresis. Each row shows a 
different vocal configuration. 
 

 

Figure 2. A sample of HSV frames extracted during 
different laryngeal maneuvers in connected speech. 
Each column represents a different disorder 
(adductor laryngeal dystonia, vocal tremor, unilateral 
vocal fold paralysis, and vocal fold paresis, from the 
left column to the right, respectively). A wide glottal 
area, small glottal area, and no glottal area are 
represented in rows one, two, and three for each 
subject, respectively. 
Using the same frames as in column two of Figure 2, Figure 
3 shows the result of the automated segmentation using the 
DNN, the frames in left panels show the images after the 
brightness and gamma values of the frames were adjusted 
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and Gaussian filtering was done. The frames in middle 
show the automatically segmented area (in white) and the 
right panels show the automatically segmented area on the 
adjusted HSV frames (in red).  
 

 

Figure 3. A selection of HSV frames for a 
participant with vocal tremor, showing the HSV 
images post adjustment (left panels), the 
automatically created masks (middle panels), and the 
two images overlaid on top of each other (right 
panels). The figure illustrates the ability of the 
network to generate masks for wide (first row, frame 
#38,750 at 9.69 s) and small glottal areas (second 
row, frame #41,000 at 10.25 s), as well as the 
successful identification of no glottal area (third row 
frame #34,143 at 8.54 s). 
The glottal area waveform, calculated for a patient with 
vocal tremor is shown in Figure 4. The location of the 
vertical red lines in the waveform correspond to the three 
HSV frames shown in Figure 3. The higher frequency 
oscillations in the waveform represent different 
vocalizations in connected speech. The low frequency 
motions indicate the transitions of the vocal folds between 
vocalizations. 
 

 

Figure 4. Glottal area waveform for a patient with 
vocal tremor. The waveform is only shown between 
8.3 s and 10.3 s of the recording. The red vertical 
lines indicate the glottal area for the frames displayed 
in Figure 3 at 8.54, 9.69, and 10.25 s. 
The segmented frames using DNN were analyzed visually 
by two raters using a specially designed MATLAB script, 
which displayed the created masks alongside the adjusted 
HSV frames. Since the developed DNN was found to have 
80% accuracy on the testing data (for the subject with 
adductor laryngeal dystonia), the raters ensured that the 
masks were accurate for at least 80% of the frames for each 
subject. 

4. DISCUSSION 

DNN for the analysis of HSV data obtained from 
individuals with normophonic voices and several different 
neurogenic voice disorders. This study used the DNN 
created in our previous work and implemented it on new 
HSV data during connected speech. Although the DNN was 
tested using a subject with adductor laryngeal dystonia, the 
DNN was successful in segmentation of the vocal fold 
edges in HSV images for subjects with different neurogenic 
disorders. This was found based on the visual analysis of 
the data by the two raters to make sure the DNN was able to 
detect the correct edges at least 80% of the times. It should 
be noted that the raters did not view all the DNN generated 
masks, but a predetermined number based on the length of 
each recording. As each subject had between 200,000-
400,000 frames, raters viewed more than 20,000 frames for 
each participant. Furthermore, the raters viewed these 
frames multiple times to determine accuracy of each 
generated mask. The developed DNN showed difficulties in 
segmenting the glottal area in some HSV frames, especially 
for those subjects’ recordings on which the network was not 
trained due to the different image quality and VF 
configurations. This can be avoided, in future, by including 
extra frames from those subjects in the training process. 

 

Adjusted Frame Generated Mask  Overlaid Image 
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This will further increase the generalizability of the created 
DNN for the automatic segmentation of the vocal folds for 
laryngeal dystonia, vocal tremor, unilateral vocal fold 
paralysis, and paresis. One of the limitations of this work is 
that the performance of the model was visually assessed due 
to the costly process of manual labeling to conduct a 
quantitative performance assessment. Developing 
automated methods for the evaluation of the performance of 
the DNN in future will help address this limitation. Overall, 
the results of this study indicate that artificial intelligence 
may serve as a useful tool for the objective analysis of HSV 
data for different neurogenic voice disorders in connected 
speech. 
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