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ABSTRACT 

Hospital soundscapes are often associated with unhealthy 
sound levels and an overall perception of chaos and 
annoyance. Over the past four decades, concerns about the 
harmful effects of environmental noise on hospital 
stakeholders (patients, families, and healthcare 
professionals) were repeatedly raised by the scientific 
community. In this paper, the authors report a study they 
have conducted on the analysis of the acoustic environment 
of a multi-patient room in the Neurology unit in a Dutch 
hospital. The study employed sound source annotations by 
listeners to focus on what we claim is the most important 
emotional descriptor, namely annoyance. More than 9,000 
sound events and their perceived annoyance were identified 
in over 400 night-time audio recordings. Analysis revealed 
that while patient-generated sounds such as snoring 
dominate the night-time soundscape and are identified as 
highly annoying, personnel-generated sounds such as speech 
might have an even higher accumulated annoyance when the 
duration of individual sound events is taken into account. 
This finding indicates the possibility of designerly 
approaches to improving the hospital ward environment by 
focussing on interventions to increase awareness of the 
impact of specific sound events on patient’s sleep quality, 
and support actions to mitigate negative effects.  
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1. INTRODUCTION 

Since humans subconsciously perceive and react to sound 
even while asleep, sound events are a significant 
environmental factor that can interfere with our regular sleep 
patterns. As an external stressor, sound has been shown to 
cause neurophysiological changes in the brain, particularly in 
regions of the prefrontal cortex, amygdala, and 
hippocampus, which are involved in cognitive and emotional 
processing [1]. The listener's directed attention reorientation 
reflex is activated by sudden foreground sounds, and chaotic 
soundscapes do not provide sufficient time between sound 
events for psychological mechanisms, preventing arousal 
from returning to a normal, relaxed state ([2] p. 7). 
Interruptions by sound during sleep increases physiological 
and cardiovascular activity, disturbing sleep and augmenting 
the risk of stress, exhaustion, or mental health issues [3]. The 
detrimental impact of sound on sleep is recognized as a 
significant factor affecting human health and wellbeing, 
especially in hospitalised patients [4][5][6]. The recent thesis 
work by de Meyer [7] focuses on snoring as a major cause 
for sleep disturbance. Of particular interest in the context of 
the present study is the notion that an undisturbed sleep is 
imperative for successful recuperation. A clinical review 
paper by Muzet [8] states that various factors, including the 
type of sound (e.g., continuous, impulsive, intermittent) and 
its frequency spectrum, affect a sleeper's sensitivity to sound. 
Therefore, considering sound level on its own, such as LAeq, 
may not be the most informative factor in the assessment of 
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environmental sleep-friendliness. Crucially, it is necessary to 
investigate the way in which specific external sound sources 
might have a negative impact on sleep. In the present study, 
we determine sound events and their perceived annoyance 
quality through the evaluation of soundscape recordings. 
Sleep disturbance by sounds amongst patients is a frequently 
occurring problem in healthcare ranging from home care to 
general and intensive care in hospitals. One of the main 
causes of the problem is that hospitals offer shared acoustic 
spaces (i.e. acoustic biotopes) in which multiple actors 
(patients, visitors, and healthcare providers) and multiple 
objects (healthcare devices, medical tools) interact and 
contribute to the overall quality of the acoustic environment 
[9]. Such shared spaces also have different functions, which 
can change over the time of the day. For example, a patient 
room should be conducive to caregiving activities as well as 
resting and sleeping. Because of the ambiguity of its 
functions, it may be difficult to organise the acoustic 
environment or control the sound-producing events, 
especially because nurses are often unaware of the sonic 
consequences of their and others’ actions [9]. Thus, 
mitigating the problem of sleep disruption by sound is an 
ongoing effort in the field of sound-driven design for 
healthcare [10] [11].  
One major step towards improving patient experience at 
night-time would be to define what types of sounds cause 
sleep disruption. There are correlations between disruption 
and annoyance; that is being disrupted by (unwanted) sound 
causes sound annoyance [13]. We define an annoying sound 
event as a sound that has the potential to intrude and impede 
the listener’s activity, in our case, sleeping [14]. In this study, 
we specifically investigate the annoyance caused by sound 
events occurring in a hospital ward during night hours (from 
9.30 p.m. to 7.30 a.m.) and their association with disturbed 
sleep. As a following step, we will use data collected in the 
study to define a computational model of sound-induced 
sleep disturbances in hospital wards to inform nursing staff 
on the ‘footprint’ of specific sound events. Our overall aim is 
to be able to support design decisions for improved patient 
experience. 

2. MATERIALS AND METHODS 

Some of the authors of the present paper previously carried 
out an explorative study [15] in the Neurology department of 
a Dutch hospital, specifically, Reinier de Graaf hospital in 
Delft. Monophonic sound recordings were captured at night 
in different four-patient rooms for 14 nights. Health tracking 
bracelets worn by the patients monitored their sleep and 
allowed time stamping all the significant arousals (or 

awakenings) as transitions from either a deep or light sleep 
stage to awake. This decision was made because, when 
compared to polysomnography - the gold-standard scientific 
method for tracking sleep - Fitbit technology has been shown 
to be accurate at identifying transitions from deeper sleep 
stages to awake but largely ineffective at differentiating 
between deep and light sleep stages. The data contains a total 
of 474 arousals. More details on the experimental procedures 
can be found in [15]. 
The full set of sound recordings and time-stamped arousals 
is the starting point of the present work. A thirty-second 
excerpt corresponding to the sound recording immediately 
preceding each single arousal event was extracted. Out of the 
474 sound excerpts, we excluded 45 that had short silent gaps 
in the recording due to technical requirements. The 
remaining 429 sound excerpts were used for the following 
experiment. Their total duration is 3 hours, 42 minutes, and 
30 seconds. 

2.1 Study procedure 

The ratings task follows the procedure of sound source 
annotations developed by two of the authors of this paper 
[16] for the evaluation of the urban soundscape during the 
COVID lockdown. An individually randomised sample of 
sound files was given to each of the participating annotators 
(see further below). Each file was opened using the 
Audacity® software with settings as follows: spectrogram 
(80 - 8000 Hz Mel scale), grayscale, and full-width and -
height display. The annotators wore headphones (Audio 
Technica ATH-M70X or similar closed-back monitor 
headphones). Firstly, listening to several recordings the 
second and third authors identified nine basic categories for 
sound events in the sample. Note that in this context, ‘sound 
source’ and ‘sound event’ are considered as equal. They were 
labelled as: beep, breath, clothes, cough, footstep, furniture, 
mechanical, snore, speech. In addition, a rest category was 
included as: ‘other (specify)’. This step was necessary to be 
able to provide a standard set of labels for the participants to 
annotate and rate in the following steps. 
Annotators were instructed to mark as many sound sources 
as they could (aiming at around 6 to 15 in each 30–second 
recording), focusing on “sounds that you think could disturb 
somebody’s sleep”. In the Audacity® interface, they would 
select the start and end points of the sound event in the 
corresponding spectrogram using the ‘Label’ function (see 
Fig. 1). 
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Figure 1. Spectrogram of a sound file with the 
selection and labelling process on Audacity®. 
 
They were then asked to label each selected sound event 
using the nine categories provided (or the ‘other’), and to rate 
the annoyance that each annotated sound source might cause. 
A three-step Likert scale was employed, with numerals 1, 2, 
and 3 referring to low, medium, and high perceived 
annoyance, respectively. We stress that annoyance was rated 
within the given category of sound and independently of 
loudness and duration. Hence, for example, ‘breath 3’ would 
indicate a highly annoying sound event, and more annoying 
than ‘snore 2’ even if the latter might very well be louder than 
the former; meanwhile, duration was captured by the label’s 
end and start points. The three-step scale was adapted from 
the protocol developed by one of the authors in [17] to assess 
the Liking estimate (like/dislike) of sound sources in indoor 
(restaurant) soundscapes. Thus, annotators were instructed to 
add a number from 1 to 3 to the word label for each sound 
event in the Audacity® software and export all labels in text 
form. 

2.2 Participants  

Twenty-eight participants, here referred to as 'annotators,' 
were recruited to evaluate the 429 soundscape recordings. 
All confirmed being in normal health and having no hearing 
loss at the time of the task. In a first round, 18 participants 
were recruited by snowball sampling amongst undergraduate 
and research students currently in or having completed a 
sound-focused class. Their mean age was 26 years, with a 
range between 18 and 40, and consisted of 11 females and 
seven males. Their work lasted approximately 90 minutes. 
Two of them were excluded due to low consistency in 
performing the task. To assure high quality in ratings, we 
then recruited a second round of twelve annotators 
considered as expert raters (research students and assistants 
in the authors' labs, together with the authors themselves). 
Their mean age was 30 years, with a range between 24 and 
55, and comprised 10 females and two males. The work took 
three to four hours. Taken under one, measures for the inter-

rater agreement of the 28 annotators are reported further 
below. 

3. RESULTS 

In total, annotators identified 9296 sound events in the 
recordings. Raw annotations were tidied up (changing to 
lowercase, removing trailing blank spaces and non-letter 
symbols, correcting spelling mistakes, grouping by 
synonyms, e.g., snore-snoring or breath-breathing, and so 
forth) and allocated to the nine predetermined categories. In 
a small number of cases, the annotator had used the ‘other’ 
category. These were individually listened to by the 
researchers and interpreted in one of the predetermined nine 
categories or removed.  
After this, the repartition amongst categories was as follows: 
‘snore’ (47.0%), ‘breath’ (25.0%), ‘furniture’ (6.4%), 
‘mechanical’ (5.9%), ‘speech’ (5.7%), ‘clothes’ (4.4%), 
‘footsteps’ (2.3%), ‘beep’ (2.1%), and ‘cough’ (1.2%). In the 
next step, the nine sound types were allocated to two higher-
level and non-overlapping categories (i.e., forming a 
taxonomic clade) following the procedure used in [15]. 
While the sounds ‘breath’, ‘cough’, and ‘snore’ entered a 
category for patient-generated sounds, the sound types 
‘beep’, ‘footstep’, ‘furniture’, and ‘speech’ were considered 
as personnel-generated sounds. Sounds labelled as ‘clothes’ 
could have been generated either by personnel or patient 
movements and were not included in either. Finally, the 
personnel-generated sounds were subdivided based on 
whether they originated in behaviour (‘footstep’, ‘speech’) or 
the technical equipment that personnel use (‘beep’, 
‘furniture’, ‘mechanical’). This process yielded the 
classification illustrated in Fig. 2. 
 

 
Figure 2. Schematic representation of a Taxonomy of 
Sound Sources in Hospital Wards. 
 
To estimate inter-rater agreement among the annotators (N = 
28), we extracted (for each annotator) the number of labels 
in each of the nine sound source categories relative to the 
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total, as well as their cumulative duration relative to the total, 
as captured by the labels. Krippendorff's alpha (using the 
function DescTools::KrippAlpha in R, with interval scale) 
was 0.79 for label counts and 0.71 for label durations. While 
the evaluation of Krippendorff's alpha depends on context 
[18], we believe that the overall level of agreement among 
annotators in the present study can be considered as good. 
We also compared annotators by calculating Spearman's rho 
on the vectors pairwise. For the number of labels, the median 
correlation was 0.85 in a range [0.54, 0.90], and for 
durations, it was 0.80 in a range [0.37, 0.85]. These statistics 
support the decision to keep all the annotators for further 
analysis.  
Recall that the annotators gave each labelled sound a value 
(1, 2, or 3) to indicate its level of annoyance (low, medium, 
or high) within that category of sound. In the following 
analysis, we treat the three levels as numerical values on a 
continuous scale. Fig. 3 shows the distribution of annoyance 
for the nine predetermined sound categories. 
 

 
Figure 3. Violin plots of ‘raw’ annoyance ratings for 
sounds in nine categories. 

 
Looking at the raw Annoyance values in Tab. 1, the highest 
scores were for ‘cough’ (2.8) and ‘snore’ (2.09). However, 
they were of different character: coughing appeared less 
frequently (1.2% of annotations) and were of shorter duration 
(1.42 seconds on average) than the very prevalent snoring 
(47%) that were typically longer (2.22 seconds). Slightly less 
annoying were ‘beep’ (alarms and other signals) and ‘speech 
(almost exclusively communication amongst the nursing 
personnel). Similarly to the previous pair, their occurrence 
was different: beeps were less frequent and shorter than 
speech. The annoyance levels of sounds from furniture, 
footsteps, and mechanical were comparable, but the 
durations differed greatly. In fact, the category furniture 
included intermittent sounds such as the closing of doors, and 
mechanical included several occurrences of continuous 
background noise from air conditioners. Finally, the least 
annoying (yet still a potential cause for sleep disturbance) 
were sounds from breathing and the rustling of clothes, 
which were similar in terms of duration and frequency. These 
observations caused us to carefully consider the duration of 
potentially disturbing sound events. As mentioned, 
annoyance was rated for each sound event on a scale 1 to 3. 
Noting that the annotators used this scale slightly differently, 
we z-scaled the values within each annotator, putting the 
centre at 2 (corresponding to 'medium' annoyance) and 
giving the distribution a standard deviation of 1. Since the 
distribution of raw ratings within the annotator was always 
positively skewed, the variable scaled this way did not have 
a range of [1, 3] but instead [0.26, 10.9]; importantly, the 
interquartile range was [1.1, 2.9] which is indeed close to [1, 
3]. We used this variable to operationally define two indices 
of the negative impact that sounds of different types might 
have on sleep. Firstly, Integrated Annoyance was calculated 
as the product of annoyance (scaled within each annotator) 
and the logarithm of the sound's duration.  Secondly, 
Cumulative Annoyance was defined as the sum of Integrated 
Annoyance scores across its occurrences within a given time 
interval.

Table 1. Overall statistics for 9296 sound events labels in 429 night-time recordings. Integrated Annoyance 

is the product of Annoyance (scaled) and the logarithm of the sounds’ duration; Cumulative Annoyance is 
Integrated Annoyance multiplied by Count, i.e., the total number of occurrences. The first nine rows are for 

the predetermined sound types, and the last three are for the higher categories, as defined in the text.  

 Count Frequency 
(%) 

Duration 
(seconds) 

Annoyance 
(raw) 

Annoyance 
(scaled) 

Integrated 
Annoyance 

Cumulative 
Annoyance 

beep 193 2.1 2.34 1.86 0.13 0.97 187 
breath 2322 25 1.90 1.34 -0.43 0.56 1289 
clothes 408 4.4 2.53 1.34 -0.49 0.92 375 
cough 111 1.2 1.42 2.18 0.91 0.65 72 
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footstep 216 2.3 2.57 1.47 -0.32 0.94 203 
furniture 599 6.4 1.46 1.62 -0.17 0.10 62 
mechanical 551 5.9 8.21 1.49 -0.36 1.41 775 
snore 4365 47 2.22 2.09 0.33 1.48 6442 
speech 531 5.7 3.65 1.77 0.02 1.64 870 
        
patients 6798 73.1 2.10 1.84 2.08 1.15 7804 
behaviors 747 8.0 3.34 1.68 1.92 1.44 1073 
objects 1343 14.4 4.35 1.60 1.80 0.76 1024 

Tab. 1 shows the values of raw, scaled, Integrated, and 
Cumulative Annoyance for each sound category and the 
three higher-level categories (see Fig. 2) across the set of 
audio recordings. Human sounds (i.e., speech, cough, snore, 
and breath) were by far the most annoying sources (1.83 raw 
annoyance rate), followed by machine-related sounds (1.59). 
Sounds that refer to physical actions were characterised by 
intermittent and fairly loud events (such as a door closing, in 
the ‘furniture’ category) or repeated impulse sounds (such as 
footsteps), and were less annoying (1.50). Finally, breathing 
and clothing sounds, both typically with pink-noise 
characteristics and smooth dynamic envelopes, were 
perceived as the least annoying. 
 

 

Figure 4a. Estimated disturbance of sounds in the 
nine categories during a typical night. 
 

 

Figure 4b.  Estimated disturbance of patient-
generated sounds set against personnel-generated 
sounds (behaviours and objects) during a typical 
night. Values are accumulated Integrated 

Annoyance in time windows of 20 minutes with 
50% overlap. 
 
Fig. 4a illustrates how Cumulative Annoyance of different 
sound types developed over the course of a typical night 
(values accumulated in 30-minute windows), with snoring 
being by far the most annoying sound event, followed by 
breath, speech, and mechanical (Fig. 4b). The reader will 
recall that the sound samples analysed in this study 
immediately precede each single arousal as collected by the 
tracking bracelets. Therefore, the curves can be interpreted 
as an index of the probability that a given sound type caused 
a sleep disturbance at that point in time.  
In an explorative time series analysis, we tested whether the 
present data might support the assumption that personnel-
generated sounds cause patient-generated sounds (which, by 
extension, indicate disturbed sleep). Following the procedure 
outlined in [19] [20] the three curves in Fig. 4b were treated 
as time series. The series for patient-sounds was whitened to 
achieve ‘weak stationarity’, i.e., serial correlation was 
removed through ARIMA modelling with optimal 
coefficients. The residuals after fitting this series were then 
taken as the dependent variable in two successive Granger 
causality tests with the personnel-generated series for objects 
and behaviours, respectively, as the independent variable. 
Neither test was significant, so there is no evidence for 
causality among these variables in the current data. Further 
research might probe this matter more deeply. 

4. DISCUSSION 

In this study, we investigated sound-producing events and 
their relationship with perceived annoyance levels within a 
hospital ward during night-time. The primary goal of the 
study was to categorise sound events and understand how 
they relate to annoyance levels. We found that in a typical 
hospital ward at night, patients are likely to wake up to 
sounds from patients consisting of snoring, coughing, and 
breathing; and sounds from nursing personnel, either 
generated by them directly, as in talking and footsteps, or 
indirectly, as in medical alarms and other mechanical sounds 
(including air conditioning systems). They could also be 
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awoken by sounds that come from the rustling of clothes, as 
in when patients move in their sleep, or when nurses are 
giving care (such as changing bed sheets). To model the 
differing likelihood that such sound events have for 
disrupting sleep, we focussed on their perceived annoyance 
level, duration, and frequency of occurrence.  
Secondly, we gathered information on the distribution of 
annoying sounds to chart out a ‘typical’ night in order to 
identify sleep-disturbing sound sources. Estimates for 
annoyance were obtained for pre-determined sound 
categories and post-determined higher-level categories. The 
number of occurrences and duration of the annotated sounds, 
and their annoyance levels, were calculated to obtain 
Integrated and Cumulative Annoyance levels for each 
category as well as the three higher-level categories. 
Integrated Annoyance was then calculated in time windows 
over the nightly recordings (9:30 pm to 7:30 am) to obtain an 
estimation of sleep-disturbing sound events. Within the three 
higher-level categories, personnel-generated behavioural 
sounds have the highest level of Integrated Annoyance 
(1.44). Recall that Integrated Annoyance depends on the 
duration of sound events, as well as their perceived (Raw) 
Annoyance level (see Tab.1). This finding is critical in 
supporting design-driven interventions towards the 
improvement of patients’ well-being in hospital wards. 
Sounds belonging to this category are, in fact, actively 
produced by nursing staff during their work routine (notably, 
speech and footsteps), and their potential to disrupt sleep 
increases as a function of their cumulative duration over 
time. As such, they can be actively mitigated to reduce their 
negative impact. Within the personnel-generated objects 
sounds, sounds generated by machines have a higher 
annoyance level. Even if sounds in this category occur less 
frequently than, for instance, furniture sounds, they tend to 
have a longer duration which is responsible for a higher 
Integrated Annoyance level. This might be due to the 
presence, within this category, of continuous sounds such as 
background noise generated by air conditioning and heating 
systems. Alarm (‘beep’) sounds, very often indicated as a 
critical source of discomfort for hospital patients and nursing 
staff [21], present low Cumulative annoyance. This is 
perhaps not surprising in the context of the ward under study, 
where alarms occur far less frequently than, for instance, 
intensive care units in which alarms represent a major health 
concern. In general, this is yet another evidence supporting 
the claim that the evaluation of the soundscape quality is 
highly context-dependent [22]. 
Preliminary experimental findings highlight an accumulation 
of snoring sounds rated with the highest Raw Annoyance 
level in the interval from 12:00 a.m. to 4:00 a.m. This might 
be due to contextual and environmental factors i.e., it is the 

time of the night when patients are in a deeper sleep state, 
and there is a very limited presence of other sound sources 
i.e., annotators might have tended to interpret as more 
annoying those sound sources that ‘intruded’ on the 
soundscape. This interpretation aligns with Lindborg’s 
interpretation that noise sensitivity (a predictor of 
annoyance), as a self-report measure, captures an evaluative 
predisposition towards sounds rather than aspects of auditory 

processing or noise exposure per se [23]. To further validate 
this assumption, we will investigate the correlation between 
the level of annoyance by snoring sounds and loudness 
during the identified time slot, the annoyance level and 
loudness of co-occurring sounds, and other factors already 
identified in literature that characterise sounds that tend to 
disturb sleepers (e.g., continuous, impulsive, intermittent 
sound morphology and frequency spectrum [7, 8]). The 
highest sound annoyance is found between 3:00 am and 4:00 
am. In this frame, a higher Integrated Annoyance for 
patients-generated sounds (breathing and snoring) 
corresponds to higher annoyance level for speech, which is a 
sound voluntarily generated by nursing personnel (Fig. 4b). 
This finding suggests a direct correlation between the 
increased occurrence of speech sounds and disturbance in 
patient sleep and as mentioned, its negative impact could be 
actively mitigated through behavioural-change interventions 
and training of nursing staff [24] [25], provided that nursing 
staff has access to information on the footprint of each sound 
category. Personnel-generated object sounds, such as 
furniture (e.g., doors opening and closing) can be addressed 
both as a medium-term behavioural change process. More 
interestingly, they can be addressed through medium-long 
term design strategies that need to engage the hospital 
management and industry stakeholders in defining broader 
guidelines that include the redesign of the architectural 
indoor space of hospital wards, the tools used by staff (such 
as delivery trolleys) and medical alarms. 
Towards the end of our data collection timeframe, 
Cumulative Integrated Annoyance tends to grow for all the 
sound categories. Between 6:00 am and 7:00 am speech, 
furniture, beep, footsteps, and cough become more frequent 
and annoying (Fig. 4). This is most likely due to the 
progressive awakening of the ward’s activity with the 
handover from the night shift, breakfast delivery to patients, 
cleaning, the start of the medical exams, all activities that will 
involve more communication and action-generated 
sounds. It confirms prior findings that hospital patients 
perceive their sleep to be inadequate mostly in the early 
morning [26].  
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5. CONCLUSIONS  

The goal of this study was to gather empirical insights on the 
predominant sound sources in a hospital ward at night-time, 
their perceived annoyance level, and its correlation with 
disturbed patient sleep. The results will be used to inform the 
design and development of a computational model of 
annoyance by sound in hospital wards. The goal of the model 
is to provide nursing staff with increased awareness of the 
specific footprint of sound events in the context of hospital 
wards at night so that they can take action to mitigate the 
negative impact on patients’ sleep. The main results 
highlighted that: 
Cumulative Annoyance is highest for patients-generated 
sounds, such as snoring and breathing followed by speech 
sounds generated by nursing staff, which is an active, 
voluntarily produced sound source. According to the 
Cumulative Annoyance index, the snoring, breathing, and 
speech sounds have high annoyance levels, with snoring 
being by far the most annoying sound source. This is due to 
the higher number of occurrences, in our dataset, of snoring 
sounds. However, our analysis highlights that it is towards 
the reduction of nursing personnel behaviour-sounds, 
primarily speech, that a design-driven solution should focus, 
in order to sustain short- and medium-term mitigation 
strategies among the hospital staff. 
Integrated Annoyance is highest for personnel behaviour 
sounds such as speech, patient sound such as snoring, 
followed by personnel object sounds such as mechanical. 
These findings fully confirm existing literature on the impact 
of speech and mechanical sounds on the hospital acoustic 
environment [24] [25] [27]. This is a key result since, while 
snoring is produced by patients in their sleep (and, as such, is 
emitted involuntarily), personnel-generated mechanical 
sounds are actively produced (mainly) by hospital 
professionals during their work. Previous research from 
some of the authors of this paper [10] [28] shows that 
hospital professionals are often unaware of their own 
contribution to the noisy sound environment and feel they 
have no control to change it. A novel technological solution 
that aims to increase the nurses’ awareness of unwanted 
sounds (i.e., that can disrupt patients’ sleep) will need to 
provide easy to understand information on what sounds are 
generated by nurses’ behaviour that can be acted upon.  
Speech (by nursing personnel) and snoring and breathing 
sounds (by patients) might be correlated, if personnel 
speaking causes patients to have a noisier sleep that is lighter 
and of lower quality. While these results confirm literature 
on sound-induced sleep disturbances [4] [29] [30], this 
assumption will have to be further explored by collecting 

new data within the specific timeframes and observations 
and interviews with the hospital’s personnel.  
 
Our findings on annoyance by sound during sleep will 
support a forthcoming phase of the study where we aim at 
designing an algorithm for the automatic detection of sleep-
disturbing events in the context of multi-patients’ hospital 
wards. The algorithm will integrate a comprehensive design-
driven solution to increase awareness of the footprint of 
specific sound sources on patients’ sleep quality and support 
actions to mitigate negative effects. We will also take a closer 
look at masking effects, such as when snoring (a broad-band 
noisy sound with a low-frequency centroid) masks breathing 
(which typically has a higher centroid). 
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