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ABSTRACT* 

The vibration response of bone has the potential to be used 
as a measure of bone strength for Osteoporosis detection. 
Modelling the vibration response requires capturing the 
shape of the long bones which have several complicated 
features. Yet modelling entire long bones does not give 
enough insight into the influence these features have on the 
vibration response. This paper identifies the key features of 
the shape of a tibia bone (cross-sectional shape, twist, and 
scale) and investigates their individual and combined effect 
on the eigenfrequencies of a series of finite element models. 
The cross-sectional shape is adjusted by changing a few key 
parameters defining the shape. The twist is added across the 
long axis of the model producing an inline twist across the 
length of the bone. The scale of the cross section is changed 
along the length of the bone to encompass the larger 
proximal and distal end of the long bones. The results are 
discussed in the context of understanding the fundamental 
effects of the bone’s shape and generating datasets for 
machine learning algorithms. 
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1. INTRODUCTION 

Osteoporosis is a medical term to describe the loss of bone 
strength and the increased risk of fracture from small falls. 
A possible method of measuring bone strength is to use the 
vibration of long bones which is directly linked to the bone 
stiffness, a major factor in strength [1,2]. There have been 
several attempts to model the vibration of long bone 
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involving Finite Element [FE] method to account for the 
shape’s influence on bone vibration [3-5] but although FE 
models have become more detailed, few researchers have 
attempted to isolate particular features of the shape and/or 
their influence on the modal response. This paper will 
attempt to identify, isolate, and analyse the major features 
of the shape of long bones. 

2. THEORY 

The equation of motion for Timoshenko beams is 
 

 
(1) 

where: 
 is transverse displacement with x being the distance 

along the axis of the beam, t the time, y the vertical and z 
the lateral dimensions (replacing y with z in (1) gives 
equation for the lateral displacement), m is the mass, which 
is   

 (2) 
where: 
ρ is the surface density, A is cross sectional area; EI is the 
stiffness term (bending rigidity), with E the Young’s/elastic 
modulus and I the mass moment of inertia, also known as 
the 2nd moment of inertia. Particular to Timoshenko beams, 
G is the elastic shear modulus and kʹ is the shape or shear 
correction factor, that depends on the geometry of the beam 
and the Poisson ratio v. These last two terms are included to 
account for the shear deformation and rotary inertia effects 
on beam vibration. This equation can be solved semi-
analytically to give the roots for free-free conditions [6]. 
These roots γn are related to the natural frequencies Fn 
though the following equation: 

 (3) 

Where L is the length of the beam. The modal frequencies 
are therefore directly influenced by changes in the stiffness 
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and the density of the material. The stiffness is itself 
influenced by changes to elastic modulus and the 2nd 
moments of inertia I, defined as: 

 (3.1) 

  (3.2) 

Where: R is the region representing the cross-section. The 
area moment of inertia is typically different in the y and z 
directions and depends on the choice of reference point. In 
this paper, the reference point is the centroid of the cross-
sectional shape R. 

3. COMSOL EXPERIMENTS 

A femur .stl and tibia .stl model were imported into 
COMSOL 6.0 with the mesh simplified using the default 
settings [7,8]. The models were then transformed to remove 
any position offsets and have its length parallel to the x axis. 
Cut planes are then set in 10mm intervals to find the cross 
section. Example of cross sections are given below in Fig.1: 

 

Figure 1: examples of midshaft cross sections 
in the tibia (left) and femur (right). 

The simple models were generated using COMSOL’s 
standard geometry builder. A set of standard parameters 
were chosen to allow for fair comparison of the models, 
given in Table 1. The material properties were selected to 
give an estimation of cortical bone material. The models 
were also emulated in MATLAB 2018a using the 
Timoshenko model (1) to give a level of verification of the 
results using these same parameters. Each cross-section 
shape in this study will have the same area to maintain 
consistency. 

Table 1. Standard parameters of test rods 

Variable Value [Unit] 
Length 0.8 [m] 
Radius1 0.02 [m] 
Cross-Sectional Area 0.00126 [m2] 

————————— 
1 Or equivalent metric – See Table 2. 

Elastic Modulus 22 [GPa] 
Density 2090 [kg/m3] 
Poisson Ratio 0.3 [N/A] 
Maximum Element 
Length2 

0.02 [m] 

3.1 Cross Sections 

From observing the cross sections of the tibia and femur, it 
can be seen that their shape changes from circular to 
angular and with definite major and minor axes. Therefore, 
the following shapes in Table 2 were chosen to change from 
the symmetric circle to the asymmetric angular triangle. 
The circular prism is the simplest cross section and appears 
often in the literature [9,10]. As it is symmetric, Iy = Iz and 
the modal frequencies repeat in perpendicular directions 
producing only one harmonic series. Triangular cross 
sections have been suggested previously [11] but there has 
been a lack of progress on investigating the theoretical shear 
coefficients and shape factors [12,13]. Given the 
verification of the COMSOL model for the other cross-
sections, we investigated triangular cross-sections other 
than equilateral i.e. saline. A parameter sweep was carried 
out in MATLAB and COMSOL between the parameters in 
Table 2. 

Table 2: Cross-sectional shapes and key 
parameters. 

Shape Parameters 
Circle Radius 
Ellipse Radius A; Radius B; A:B 

Ratio 
Triangular - Equilateral Side Length 
Triangular - Saline Circumcircle Radius; 

Internal angle 
The circumcircle describes the circle which passes through 
all the vertices of a polygon, in this case the triangle. This is 
defined mathematically using sine rule: 

 
(4) 

Where: 
R is the radius of the circumcircle, A, B & C are the angles 
of the triangle and a, b & c are the sides opposite those 
angles. Internal angle describes one of these angles A, B, & 
C as a variable. The remaining two angles are then adjusted 

————————— 
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to ensure the total sum is 180o. These two parameters are 
illustrated in Figure 2 below. 

 

Figure 2: The saline triangle cross section 
showing the internal angles and sides for two 
triangles at 50o and 40o and the circumcircle in 
red for the 40o triangle. In the parameter 
sweeps, the angle A is varied. 

The eigenfrequencies of the tibia and femur models were 
calculated using the eigenfrequency study in COMSOL’s 
solid mechanics module. The same study was used with 3D 
models of the cross-sections listed in Table 2. A selected 
number of eigenfrequencies and their error to the 
MATLAB calculations are given in Table 3.

Table 3: Cross-sectional shape and modal frequencies 

Shape COMSOL F1-F3 [Hz] MATLAB % 
Error 

Femur [258.74/299.57/613.42
] 

- 

Tibia [365.96/455.62/1175.1
] 

- 

Circle [2x 179.34/2x 
488.65/2x 942.33] 

[0.002/0.011/0.02
3] 

Ellipse [120.02/266.85/329.10
] 

[-0.006/0.024/-
0.006] 

Triangl
e - E 

[2x 
196.81/2x533.96/978.1
7] 

[-0.006/-0.006/-
0.022] 

Triangl
e – 50o 

[175.19/220.98/476.59
] 

[1.12/-35.64/3.13] 

Triangl
e – 40o 

[154.37/250.39/420.80
] 

[1.89/-76.53/5.54] 

Triangl
e – 30o 

[132.74/290.18/362.45
] 

[-10.00/-106.12/-
26.26] 

 
The repeated modal frequencies of the circle and equilateral 
triangle are expected given the similar area moments in the 
two bending directions for those shapes. As seen in Figure 
3, an asymmetric shape such as the ellipse allows for 
separate bending modes in the two directions with different 
area moments. A large error between the COMSOL and 
MATLAB results for the saline triangle is from the shear 
correction factor being unknown for this shape. For this 
cross-section, the COMSOL results are taken as the 
reference and the MATLAB results being the comparator, 
using a shear correction factor of ky = kz = 0.73 as used for 
the equilateral triangle [10] in equation (1).  

 

Figure 3: F1 (left) and F2 (Right) of the ellipse 
(A:B ratio of 1.5) showing the two bending 
directions in the z and y directions respectively. 

Figure 4 shows the normalised frequencies of the real bone 
as circular markers and the different cross-section shape 
results as crosses, showing the modal frequency pattern for 
each shape. Referring to the triangular shape of the midshaft 
of the tibia in Figure 1, the triangular cross section of 50o is 
closer to the modal distribution of the tibia. The modal 
distribution has an average error across all normalised 
modes of 6.05%, while the ellipse has an average error of 
34.43% 

A B 

C 

a 

b 

c 
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Figure 4: Normalised modal frequencies of 
cross-sections [crosses], tibia, and femur 
[circles]. 

The ellipse is one of the shapes with an asymmetrical cross 
section but the degree of symmetry can be adjusted through 
the A:B ratio. This is swept in Table 4 with the resulting 
modal frequency changes. 
 

Table 4: Elliptical ratio change on modal 
frequencies 

A:B 
Ratio 

F1-F3 [Hz] Change % 
[from 1.0] 

1.0 [2x 179.34/ 2x 488.65/2x 
942.33] 

- 

1.2 [149.76/214.60/409.46] [16.50/ 
-19.66/16.21] 

1.4 [128.52/249.53/352.13] [28.34/ 
-39.14/27.93] 

1.6 [112.56/284.10/308.83] [37.24/ 
-58.41/36.80] 

1.8 [100.10/274.90/318.28] [44.19/ 
-55.28/34.86] 

 
Changing the ellipse ratio splits the modal frequencies as 
the area moment changes in the two bending directions. The 
1st bending modal frequency falls by over 25% once the 

A:B ratio is 1.4, with the 2nd bending mode increasing in 
frequency to almost 40% compared to the circle. 
 
The angle A in the saline triangle is swept from 60o to 30o 
in COMSOL which morphs the cross-section from 
equilateral to right-angled triangle. The results of this sweep 
are in Table 5.  

Table 5: Angle change on modal frequencies 

Angle 
1 [deg] 

F1-F3 [Hz] Change % [from 
60o] 

60 [2x 196.81/2x 
533.96/978.18] 

- 

50 [175.19/220.98/476.59] [10.98/ 
-12.28/10.74] 

40 [154.37/250.39/420.81] [21.56/ 
-27.23/21.19] 

30 [132.74/290.18/362.45] [32.55/ 
-47.45/32.12] 

As for the ellipse, the splitting of the modal frequencies are 
apparent but with clearer trend in the falling modal 
frequencies for 1st and 3rd modes. There is a greater % 
change in the modal frequencies for the 2nd bending mode, 
owing to the greater change in Iy compared to Iz.  

3.2 Twist 

We can implement a twist to the geometry in COMSOL 
which extrudes and rotates the vertices of the geometry over 
a specified distance. This implementation can reduce the 
cross-section area within the length of the prism, especially 
at twists greater than 45o. This can be seen in Figure 5 with 
the areas at the ends of the geometry (red circle) and the 
cross-section in the middle of the prism (yellow circle). 
Table 6 shows the amount of area reduction for some twist 
angles. 

Table 6. Area Reductions for Twist Angles 

Angle [deg] Area [m2] Percent 
0 0.0012524 100 
22.5 0.0012047 96.191 
45 0.0010690 85.356 
90 0.00062617 49.998 
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Figure 5: Geometry of the circle with a 90o 
twist showing the smaller cross-sectional area 
in the middle (yellow circle) compared to the 
ends (red circle). 

Therefore, the twist will have a compounding effect of 
changing the cross-section along the length. The results of a 
few case examples are given in Table 7. 

Table 7: Cross-section with twist modal 
frequencies 

Shape Twist [deg] F1-F3 [Hz] 
Circle 0 [281.45/766.76/1478.41] 
Circle 40 [259.70/722.82/1407.63] 
Ellipse 40 [174.36/370.74/509.60] 
Triangle 
- E 

40 [285.60/795.52/1551.88] 

Triangle 
– F 50 

40 [254.46/319.28/714.94] 

Triangle 
– F 40 

40 [223.84/358.31/632.06] 

The inclusion of twist gives a proportional reduction of the 
modal frequencies across all the cross-section shapes and 
mode number i.e. a twist of 20o gives a 1.5 to 2.5% decrease 
in the modal frequencies for all the cross sectional shapes. 
Further twist produces an increasing decrease in modal 
frequencies compared to the untwisted state. Twists of 30o 
produced a 4.4% to 2.7% decrease in modal frequencies for 
the triangular cross-sections for example. These values 
become 28.8% to 17.8% for a twist of 80o. Only the ellipse 
breaks this trend: for its lateral mode the modal frequency 
decreases by about 3% per 10o twist, and not only has a 
change of 9.7% for an extreme twist of 80o. But there are 
some exceptions given the influence of other effects such as 
the triangular internal angle or change in cross-sectional 
shape which can be investigated further. 

3.3 Scale 

To emulate the ends of the tibia and femur, the ends of the 
rod were given greater cross-sections than the midshaft. The 
two end faces of the midshaft are extruded with LD and LP 
for the distal and proximal ends respectively. The ends’ 
cross-sections are increased with a scaling factor SD and SP 
and the geometry joins the midshaft face to the expanded 
end faces over the distance LD and LP (see Fig 6 for 
illustration).  

 

Figure 6: A triangular prism bending mode 
with the two ends with different scales SD & SP 
over LD & LP. 

This creates a linear increase in the cross-sectional area 
which emulates the real bone’s larger proximal and distal 
ends but ignores the change in cross-sectional shape at these 
ends. The ends of the model are adjusted separately to 
reflect the difference in size and extend of the proximal and 
distal end of the bone. The cross-section was kept as 
equilateral triangle for this experiment. The results of 
sweeping LP, LD, SD and SP are given in Table 9. 
 

Table 9: Cross-section and scale on modal frequencies 

LP 
[m] 

LD 
[m] 

S
P 

S
D 

F1-F4 [Hz] 

0.06
0 

0.06
0 

1 1 [309.18/309.20/840.87/841.0
8] 

0.06
0 

0.06
0 

2 1 [277.57/278.05/780.10/781.0
4] 

0.06
0 

0.06
0 

2 2 [248.90/250.20/718.05/718.7
9] 

0.01
6 

0.06
0 

2 1 [277.48/277.93/778.98/779.9
3] 

0.01
6 

0.01
6 

2 1 [268.68/269.47/780.23/781.6
6] 

0.01
6 

0.01
6 

2 2 [231.36/233.31/708.66/7020.
28] 
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Changing the scale of the cross sections at either end can 
decrease the frequencies by 1.1% to 2.3% depending on the 
mode number, to a total of 12% scaling from 1 to 2 times 
the midshaft cross-sectional area. Extending the length of 
the ends decreases the first two modal frequencies by 3% 
but the greater modes are less affected by the change of the 
end length or changing the cross-sectional area of the ends. 

4. DISCUSSION 

Much of the literature on modelling bone vibration makes 
assumptions on the cross-sectional shape and other physical 
features in order to simplify the problem and to allow 
comparison between types of bones and across studies. The 
cross sections chosen in this paper were inspired both by the 
physical shape of the bone but also what appeared in 
previous research. Of these shapes, both the circular and the 
equilateral triangle have repeated modes which are not 
apparent in the real bones as these shapes have axial 
symmetry in each of its bending directions. Only the ellipse 
and the non-equilateral triangle had the necessary 
differences in moments of inertia which allow for different 
modal frequencies for different bending directions. 
Changing the A:B ratio and the internal angle allowed for 
further fine tuning of the modal frequencies to better match 
the real bone eigenfrequencies, but the other factors of scale 
and twist will be needed to be incorporated together to 
achieve better closeness.  
 
One of the goals of this research was to join the analytical 
modeling and FE techniques to allow for the benefits of 
both in the analysis of bone vibration. The key application 
of this can be in generating datasets for sensitivity studies 
into shape without needing to calculate for entire bones. 
Some of these features would require extensive 
modification of the analytical models to be accounted for, 
while FE methods can calculate the effects of these features 
much quicker and with fine variation possible. In the case 
of the saline triangle, this approach can inform further 
analytical development using FE methods to experiment 
with cross-sectional shapes in the first instance. 
 

5. CONCLUDING REMARKS 

This paper identified a few of the major physical features of 
the long bone (shape, cross-section, twist, and scale) to 
investigate their influence on the modal frequencies using 
FE modeling. Results showed that the symmetrical cross-
sections such as the circle and equilateral triangle had 

repeated modes not seen in real bone, while the saline 
triangle modal frequencies were closer to the tibia and 
femur (6% and 14% average error to normalised modal 
frequencies respectively). Twist decreased all modal 
frequencies from 10% to 5% per 10o with a few exceptions. 
Scaling the distal and proximal ends larger than the 
midshaft only decreased frequencies by 2.3% to 1.5% while 
making the scaled ends longer only dropped the modal 
frequencies by 3%. Further investigation is needed to 
understand if there are further parameters and features 
which have an effect on the modal frequencies in the shape 
of bone, as well as further exploration into the features 
covered in this paper. 
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