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ABSTRACT 

In contrast with linear systems, forced oscillations at 
particular frequencies may result in more than one stable 
limit cycle in the dynamic response of a nonlinear system. 
Also known as jump phenomenon, in these frequency 
regions, a nonlinear system would exhibit various dynamic 
behaviors critically depending on the initial conditions. The 
current study investigates the impact of initial conditions on 
nonlinear oscillations of an acoustically excited electro-
acoustic viscoelastic membrane. Accordingly, a 
mathematical model is developed to simulate the nonlinear 
dynamics of the membrane, and the method of multiple 
scales is then utilized to solve the governing equation of 
motion of the system. Frequency response of the system is 
extracted to examine the effect of system nonlinearity level 
on jump phenomenon. Various combinations for initial states 
of the membrane are taken into consideration, and 
corresponding phase portraits are provided to study the 
dynamic response of the system in the jump region. Finally, 
basins of attraction for stable oscillations are mapped in a 
plane spanned by initial conditions of the system for different 
excitation frequencies. 
Keywords: jump phenomenon, nonlinear oscillations, 
nonlinear electroacoustic resonators, method of multiple 
scales, basins of attraction 

1. INTRODUCTION 

Previous studies on active electroacoustic resonators (ERs) 
have mostly been carried out with the assumption that  
fluctuations in acoustic parameters remain small enough to 

maintain linearity, particularly at low frequencies. However, 
nonlinear resonators may also offer compelling performance 
characteristics that contribute to a diverse array of interesting 
phenomena. For example, the integration of a primary linear 
system with a nonlinear resonator offers opportunities to 
improve vibration mitigation through kinetic energy 
pumping [1-3] or addressing vibro-acoustic challenges by 
targeted energy transfer [4]. Despite the promising potential 
demonstrated by tunable nonlinear acoustic resonators, 
particularly in the context of enhanced active sound 
absorption [5], their comprehensive exploration and 
understanding have not been extensively pursued, revealing 
a notable research gap except for a limited number of recent 
investigations [6]. 
One of the most intriguing phenomena observed in nonlinear 
systems is the jump phenomenon. As a fundamental 
nonlinear behavior, it refers to the emergence of multiple 
stable states or branches in an oscillatory system frequency 
response, each representing a different dynamic regime [7-
9]. The dynamic response of a nonlinear system is known to 
exhibit strong sensitivity to the initial conditions within the 
jump frequency region. While the impact of initial conditions 
in nonlinear dynamics of oscillators has been extensively 
studied, initial condition dependency of steady-state 
response of nonlinear ERs has not been addressed yet. 
The current research endeavors to develop a numerical 
simulation to bridge the gap. Accordingly, the single-degree-
of-freedom controllable dynamics of an ER is taken into 
consideration. The control methodology is implemented by 
supplying the resonator with a feedback control current, 
allowing for the realization of a tunable cubic nonlinearity 
for the system. The method of multiple scales is utilized to 
solve the governing nonlinear dynamic equation. Frequency 
response is presented to illustrate the effect of system 
nonlinearity on the jump phenomenon. Phase plane 
trajectories are depicted to demonstrate high sensitivity of the 
system dynamics to very small changes of the initial 
conditions. Finally, attraction basins are provided, which 
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represent particular sets of initial conditions that correspond 
with different steady-state responses in the jump region.  

2. MATHEMATICAL MODELING 

With a limited excitation level in the low frequency range, 
the dynamic behavior of an electroacoustic resonator (ER) 
could be conveniently modeled as a linear single-degree-of-
freedom (SDOF) mass-spring-damper (MSD) system as [5]: 

 (1) 

where, a moving diaphragm with a mass of  is backed 
with an enclosure of volume , and supported by a 
viscoelastic suspension of mechanical compliance  and 
resistance . Here,  represents the displacement of the 
moving diaphragm, and  
accounts for the fluid compressibility on the rear face of the 
diaphragm, while ,  and  denote air density, sound 
speed and the effective area of loudspeaker membrane, 
respectively. Also,  indicates the total acoustic pressure 
applied to the front face of the membrane,  is the force 
factor of the moving coil transducer, and  shows the 
electric current circulating in it. 
 
The linear relationship between the membrane displacement 
and acoustic pressure inside the back cavity of the 
loudspeaker, , in the low frequency range provides the 
opportunity to define a control law for  as an arbitrary 
function of  through a feedback signal from  
simply using a microphone [5]. Here, the loudspeaker is 
subjected to an adjustable control current with a cubic 
nonlinearity in terms of membrane displacement as: 

 (2) 

where ,  is ratio of  to , and  is 
a tunable nonlinear parameter, while  demonstrates the 
sensitivity of the microphone, and  is the voltage-to-
current converter gain. This nonlinear control methodology 
allows for a desired level of nonlinearity in the system simply 
by tuning , without the need for large excitation levels [5]. 
The latter expression for control current in Eqn. (2) can be 
substituted in Eqn. (1) to give the final equation of motion of 
the system as follows: 

 
(3) 

Considering the loudspeaker being exposed to acoustic 
excitation at one end of an impedance tube,  can be 
expressed as a summation of incident  and reflected 

 pressure waves. Here, it should be noted that the 
behavior of the system under a desired external excitation, 
e.g., a pure tonal excitation, would be impossible to analyze 
with the current format of Eqn. (3) due to the presence of 
higher harmonics in the reflected waves, especially when the 
system response exhibits unpredictable transitions in the 
jump frequency region.  
 
Therefore, a preferable alternative would be to take the 
planar wave propagation assumption into account to 
represent  as [10]: 

 (4) 

where  denotes the cross-section area of the tube. Eqn. 
(4) can then be substituted in Eqn. (3) to give: 

 
(5) 

2.1 Perturbation analysis 

Here, the method of multiple scales is utilized in order to 
solve the nonlinear governing equation of the problem. 
However, it is beneficial to first present a nondimensional 
form of Eqn. (5) to provide a better understanding of the 
problem from a physical point of view. Accordingly, the 
dimensionless counterparts of time and the diaphragm 
displacement are introduced as  and  
respectively, where  represents the 
natural frequency of the system, and  is a reference value 
for the displacement measurement. Considering an incident 
pressure of the form , the 
nondimensionalized form of Eqn. (5) can be obtained as 
follows: 

 (6) 

where,  is an arbitrary chosen dimensionless small 
perturbation parameter that points out the relatively low-
order magnitude of energy dissipation, nonlinearity, and 
excitation level in the system. Also,  represents the 
dimensionless excitation frequency, while 

, , 
and  are introduced as 
nondimensional counterparts of damping factor, nonlinear 
stiffness, and excitation amplitude, respectively. 
Current study aims to investigate the response of the system 
in the vicinity of the natural frequency, which is equal to 1 
for the linear part of the nondimensional differential equation 
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(6). Therefore, the excitation frequency is considered as 
follows: 

 (7) 

where,  is the detuning parameter. Following the standard 
solution procedure with MMS, the following expansion is 
assumed for the response to determine an approximation for 
the solution [11]: 

 (8) 

where,  is the fast time scale,  refers to the 
slow time scale, and derivatives with respect to  can be 
defined as: 

 (9) 

 (10) 

where . Substitution of Eqns. (7), (8), (9) and 
(10) in (6) returns the following two equation for different 
orders of . 

: 

 (11) 

 (12) 

The solution to Eqn. (11) can be assumed as: 

 (13) 

where  is the complex conjugate of . Substituting (13) in 
(12) gives: 

 (14) 

where  expresses the derivative of  with respect to , and 
 and  account for the complex conjugate and non-

secular terms. Satisfying the solvability condition demands 
secular terms to be eliminated, which means that the sum of 
the first four terms in the right-hand side of (14) with  
must be set equal to zero. Accordingly, with  
represented in polar form as , one 
can achieve at the following equation: 

 (15) 

where . The steady state solution can eventually 
be achieved through the summation of squared values of real 
and imaginary parts of Eqn. (15), after trimming off the terms 
with time derivatives, which gives a nonlinear algebraic 
equation for  as: 

 (16) 

Dimensionless positive displacement amplitude  can then 
be obtained from Eqn. (16) for different values of . 
Considering the polar form of , the acquired value for 

 would be equal to the amplitude of  according to Eqn.   
(13), and consequently  in Eqn. (8) neglecting the terms 
with higher orders of . The actual displacement of the 
loudspeaker along with the stimulation frequency can then 
be achieved by  nd , respectively. 

3. NUMERICAL SIMULATION AND RESULTS 

The parameters of the ER can be determined through 
calibration measurements as explained in detail for example 
in [12]. A showcase study is presented here to investigate the 
nonlinear dynamics of a commercially available 
electrodynamic loudspeaker (Visaton FRWS 5 SC). It is 
noteworthy that characterization of an ER parameters can be 
determined through calibration measurements as explained 
in detail for example in [12]. The numerical values of the ER 
characteristics as well as all other affecting parameters are 
listed in Tab. 1. 

Table 1. Input parameters. 

Parameter Numerical value Parameter Numerical value 
 
 

 
 
 

 

0.618 g 
0.2806 Ns.m-1 
1.1141 N.A-1 
1.2047 kg.m-3 

343.2 m.s-1 
1.21e6 N.m-3 

 
 
 

 
 
 

25 cm2 
12 cm2 

0.2174 mm.N-1 
0.2 Pa 

0.0095 A.V-1 
-0.36 V.Pa-1 

Moreover, the perturbation parameter  is set equal to 
, while  is assumed for 

nondimensionalizing. A Matlab code was developed to solve 
the nonlinear governing equation of problem. It is important 
to note that the solution to the nonlinear algebraic equation 
(16) may yield either one or three positive values for , 
depending on the value of . To visualize the system's 
frequency response near the natural frequency, Fig. 1 
showcases the results obtained for different values of . 
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Figure 1. Comparison of the ER frequency response 
for different values of tunable nonlinear parameter .  
The ER may exhibit hardening or softening behavior 
depending on the sign of . When the magnitude of  
exceeds a specific threshold ( ), the nonlinear 
nature of the system manifests as a distinct bending of the 
response curve, resulting in the emergence of multivalued 
amplitudes within a specific frequency range. Commonly 
known as the jump phenomenon, this intriguing behavior 
signifies the high sensitivity of the response of a nonlinear 
system to variations in initial conditions [13]. Subsequent 
simulations are carried out considering a hardening cubic 
stiffness with a constant value of . 
Considering the real and imaginary parts of Eqn. (15), it can 
be shown that there exists a unique corresponding pair of  
and  that precisely represent any arbitrary chosen 
combination of system initial states (initial position and 
velocity). 
Fig. 2 depicts the phase portrait trajectories of the diaphragm 
oscillation amplitude, , for two slightly different 
initial states of  and  under excitation frequency of 670 , 
which correspond to points I and II on the frequency 
response curve in Fig. 1. It is evident that the system dynamic 
behavior is strongly dependent on the initial conditions and 
small changes in initial states can severely change the system 
dynamics. It is worthwhile to note that nodes in Fig. 2 
correspond to stable limit cycles where the oscillation 
amplitude converges to a fixed value. To demonstrate the 
relationship between the steady-state oscillation amplitude 
and the initial conditions of the system, the basins of 
attraction for stable solutions of Eqn. (15) are depicted in 
Figs. 3, 4, and 5 for excitation frequencies of 630, 670, and 
730, respectively. 
 

Figure 2. Oscillation amplitude phase portrait for 
different initial conditions. 
These figures illustrate the mapping of results onto a plane 
spanned by initial conditions. Here, black sections indicate 
initial conditions that lead the steady-state response of the 
system toward the upper branch in the jump frequency 
region, while white parts are attributed with lower oscillation 
amplitudes.  

Figure 3. Basins of attraction at 630 Hz. 
The first conclusion one can come up with from Figs. 3, 4, 
and 5, a notable observation is the periodicity of the results 
with respect to , which is due to polar representation of 

.  Furthermore,  it is evident that the system exhibits 
high sensitivity to initial conditions, particularly in the 
vicinity of the basins' boundaries. Given the inherent 
limitations in precision associated with commercially 
available measurement tools, the steady-state dynamic 
behavior of the system can only be statistically estimated 
rather than precisely predicted in these regions under realistic 
conditions. 
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Figure 4. Basins of attraction at 670 Hz. 
Finally, the comparison of Figs. 3, 4, and 5 highlights 
emerging a prominent trend. The expansion of the white 
basins indicates a higher probability of the steady-state 
response to converge towards the lower branch by increasing 
the excitation frequency in the jump region. It is evident that 
the system may exhibit the tendency to converge to either of 
the branches across the entire jump frequency region. 
Nevertheless, this observation highlights a discernible 
relationship between the excitation frequency and the 
likelihood of the loudspeaker diaphragm steady-state 
behavior in the jump region. 

Figure 5. Basins of attraction at 720 Hz. 

4. CONCLUSION 

A mathematical model of nonlinear dynamics of a feedback 
current-controlled electroacoustic resonator is developed and 
numerically solved using the method of multiple scales. 
Jump Phenomenon is observed in the frequency response as 
soon as the system nonlinearity exceeds a specific threshold. 
The results reveal a strong connection between the initial 
conditions and the steady-state response of the system in the 
jump frequency region, where a slight change in initial 

conditions may drive the phase plane trajectories towards 
different stable limit cycles. Lastly, increased likelihood of 
the steady-state response is observed to converge to the lower 
branch of the frequency response by increasing the excitation 
frequency in the jump region. The current research highlights 
the significance of initial conditions in dynamics of 
acoustically excited nonlinear ERs dynamics, providing 
hopefully useful insights for further advancements in the 
field. 
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