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ABSTRACT

Eigenmodes remain a recurring concept in several
branches of physics for the analysis of dynamical systems.
As long as they are Hermitian, they satisfy standard or-
thogonal properties. This is no longer true when gains
and/or losses are taken into account. For specific values
of some parameters, eigenvalues as well as their associ-
ated eigenvectors can coalesce because of the existence of
an exceptional point (EP). These EPs have gained much
interest in recent years because of the counter-intuitive
concepts associated with them, like strong attenuation or
mode switching phenomenon.

In the fields of acoustics and vibration, EP control may
lead to a better understanding of energy exchanges and
dissipation between modes. These aspects are also inte-
gral elements of metamaterials, since their design is based
on resonators and their coupling.

This work aims at exploring the key concepts related
to EPs by revisiting the well-known coupled pendulums
problem in the presence of damping. First, the free re-
sponse of the experimental system is investigated after
tuning it on an EP. Then an encircling is performed by
varying the parameters through time. Experimental results
allow us to observe nearly-optimal dissipation, energy ex-
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change as well as chirality effects which have already been
studied in physics.
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1. PROBLEM STATEMENT

The experimental setup consists of two simple pendulums
of mass mi and length Li coupled by a spring of stiff-
ness k located at a distance d from the pivots, as shown
in Fig. 1. As losses are needed to make this system non-
Hermitian, a magnetic damping c2 is created by means of
a conductive plate fixed at the end of the second pendu-
lum oscillating in a controllable magnetic field. In order
to achieve an encirclement in section 3, the length L2 is
also controllable by an electric linear actuator. The angles
of rotation θi of each pendulum are recorded by a Hall
effect sensor.

The equation of motion in terms of the generalized
coordinates q =

[
θ1
θ2

]
reads

Mq̈+Cq̇+Kq = 0, (1)

with

M =

[
m1L

2
1 0

0 m2L
2
2 + I2

]
, C =

[
0 0
0 c2

]
,

K =

[
m1gL1 + kd2 −kd2

−kd2 m2gL2 +Ω2
2I2 + kd2

]
,

(2)

where we take into account the moment of inertia I2 and
natural angular frequency Ω2 added to the second pendu-
lum due to the plate.

DOI: 10.61782/fa.2023.1160

5751



10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

m1

L1

θ1

L2

m2

θ2

kd d

B

Figure 1: Sketch of the coupled pendulums.

The first objective of this paper is to find out how
to achieve optimal energy dissipation of this system. We
start by taking a look at how it behaves after moving the
first pendulum from its equilibrium for different damping
values. If the damping is very low, there are periodic ex-
changes of energy between the two pendulums, as shown
by the beat pattern in Fig. 2a. This is because both pen-
dulums transfer energy to each other at a faster rate than
the second pendulum dissipates it. On the contrary, if the
damping is sufficient, the second pendulum will dissipate
it faster than they exchange it, thus ending the periodic
exchanges, as shown in Fig. 2b.
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Figure 2: Free response envelopes of the first (solid
blue line) and second pendulum (orange dashed line)
after moving the first one from its equilibrium posi-
tion for (a) strong and (b) weak coupling.

In the case of coupled oscillators, these two distinct
regimes are known as weak and strong coupling. More-
over, it is known that the transition between these two
regimes is linked to the presence of an EP [1, 2].

This kind of damping-dependent behavior also ap-
pears in the well-known damped harmonic oscillator,
which can either be underdamped or overdamped depend-
ing on its damping ratio. The transition between these two
regimes corresponds to the critical damping, for which the
system returns to equilibrium as quickly as possible with-
out oscillating. The critical damping actually corresponds
to an EP, as it is the moment where the complex conjugate
eigenvalues will merge and become purely real [3].

Similarly, can optimal attenuation of the system be
achieved by tuning L2 and c2 on an EP? To do so, a modal
analysis is necessary in order to gain a better insight.

2. MODAL ANALYSIS

The modal analysis of Eq. Eqn. (1) starts by consider-
ing the exponential ansatz q = veλt which yields the
quadratic eigenvalue problem (QEP)(

λ2M+ λC+K
)
v = 0, (3)

By construction, eigenvalues are the roots of the charac-
teristic polynomial

p(λ) = det
(
λ2M+ λC+K

)
. (4)

Because matrices M, C and K are real, eigenvalues and
eigenvectors are real or come in complex conjugate pairs
[4]. Using the Laplace transform notation, we may write
the complex eigenvalue as λ = −σ ± iω, where ω corre-
sponds to the natural angular frequency and σ to the expo-
nential decay constant, both being real. In this paper, we
are interested in situations where an eigenvalue, call it λ0,
becomes a double root, which signifies:

p(λ0) = ∂λp(λ0) = 0. (5)

In theory, to obtain an EP, one needs either a complex pa-
rameter or two real parameters. While the first case is
easy to solve with a numerical solver, the second requires
more effort. An algorithm has been developed, not de-
tailed here, allowing us to find a pair (L0

2, c
0
2) correspond-

ing to an EP.
In order to observe experimentally the impact of the

EP on the eigenvalues, let us fix L2 = L0
2 and observe

their evolution as a function of c2. The experimental
eigenvalues are obtained by curve fitting algorithm assum-
ing sum of exponential solution

q(t) = 2Re
(
v1e

λ1t + v2e
λ2t

)
, (6)
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and shown in Fig. 3. First is the hermitian case, as there
is nearly no damping. The eigenvalues are purely imag-
inary, λ = ±iω, meaning that each mode does not de-
cay through time. Next, as the damping increase, so does
the exponential decay constants while the natural angular
frequencies are getting closer and closer. Then, both the
real and imaginary parts of the eigenvalues coalesce, this
is the EP. Finally, from here, increasing the damping will
continue to increase the exponential decay constant of one
mode, but will have the opposite effect on the other.
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Figure 3: (a) Imaginary and (b) real parts of the
eigenvalues as a function of c2 for L2 = L0

2.

Thus, the EP corresponds to an optimal damping of
the free response of the system for an arbitrary initial con-
dition, in the sense that it corresponds to the configuration
where the least damped mode is the most damped.

3. MODE SWITCHING

The Fig. 3 shows separately each parts of the eigenvalues
as a function of c2. To get the full picture, we want to
display the complex eigenvalues as a function of L2 and
c2. For this purpose, it is common to use a Riemann sur-
face, as shown in Fig. 4, computed numerically, where the
curves in Fig. 3a have also been plotted. This surface pro-
vides a static picture made of a collection of independent
coupled pendulum. The natural angular frequencies are
plotted on the z-axis and the exponential decay constants
are indicated by the colour of the surface, which is either
blue if less than the EP decay (σ0 = 0.023 s−1) or red oth-
erwise (maxσ = 0.067 s−1). It is therefore obvious that
the EP corresponds to the best compromise, as one cannot
have two red surfaces for the same set of parameters.

Moreover, we can notice that this surface has the sur-
prising property of being self-intersecting (not the case for
Hermitian system). Because of this self-intersecting man-
ifold, one can move from one sheet to another by turning
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Figure 4: Riemann surface of the complex eigenval-
ues in the parameter space. The z-axis corresponds
to ω while the color refers to σ. The path of the en-
circlement is also displayed in the parameter space
(solid line) as well as its projection on the Riemann
surface (dashed line) in the clockwise direction start-
ing from the lower sheet, with the circle indicating
the starting point and the cross the EP.

around the EP (see the dashed line) and switch from one
mode to another. Does this mean that this static property
is conserved when the EP is dynamically encircled in the
parameter space ?

This was done experimentally by slowly varying the
second pendulum length and the inductance current, start-
ing at (L2, c2) = (L0

2, 0) where the initial conditions were
nearly the in-phase mode, that is the lower sheet, and en-
circling the EP in both direction. For the clockwise en-
circlement, shown in Fig. 5a, the results match our in-
tuition, as starting in-phase, we end up out-of-phase, as
suggested by the dashed line in Fig. 4. However, this is
not the case in the counter-clockwise direction, shown in
Fig. 5b, where we remain in phase and with a very high
attenuation.

To understand what happened, we have to go back to
Fig. 4. As we move the parameters, the system is per-
turbed, and these perturbations will populate both modes.
However, once we reach the high damping zone, the en-
ergy injected into the most attenuated mode (in red) will
vanish faster than in the least attenuated one (in blue) and
this latter will therefore predominate. This is why, as we
turn around the EP in the clockwise direction, we stay
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Figure 5: Response of the system for a 2-minute en-
circlement of the EP in the (a) clockwise and (b) an-
ticlockwise directions. Responses are also displayed
before and after the encirclement to highlight the
mode switching phenomenon.

“close” to the blue surface. On the counterclockwise di-
rection, however, we soon reach the red surface, and the
perturbation will populate the other surface more, ending
at the same point once the encirclement is done. This
explains why on Fig. 5b the system ends up in the same
mode and well attenuated. This yield to chiral behavior,
as the final state is determined by the direction of encir-
clement [5, 6].

4. CONCLUSION

In this work, an experimental set-up is proposed to high-
light and to encircle EP for a first time in a mechanical
system. This system allows a direct visual observation of
the main phenomena linked to EPs with a great accuracy.

During the encircling, chiral mode switching has been
evidenced. These results are conform to those observed in
other fields like in [7, 8]. Work is ongoing to investigate
the influence of the contour shape [9,10], the contour start-
ing point [8, 11] and the connection with Floquet-EP [12]
to provide a better understanding of this phenomenon.

5. REFERENCES

[1] S. R.-K. Rodriguez, “Classical and quantum distinctions
between weak and strong coupling,” European Journal of
Physics, vol. 37, p. 025802, 2016.
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