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ABSTRACT

It is incredibly challenging to simultaneously locate an
acoustic source in a noisy, reverberant environment and
mitigates directional interference. The proposed study
uses a spherical harmonic decomposition method to deter-
mine the spherical harmonics phase magnitude (SH-PM)
components corresponding to the received spherical mi-
crophone array (SMA) signals. Before SH-PM compo-
nents are used as input features to the CNN model, binary
masking removes directional interference and emphasizes
the desired audio source. In this work, the binary mask
is estimated using the learning technique such that it is
possible to reliably discriminate between acceptable and
undesired sources using real-time mask estimation. The
proposed strategy creates a learning-based mask to enable
real-time and reliable filtering of the undesirable source.
Because of this, the entire strategy is extremely flexible
and adaptable. By creating datasets, extensive simulations
evaluate the effectiveness of the offered strategy. Addi-
tionally, the approach is experimentally validated by con-
ducting tests in a live lab setting. The significance of the
suggested strategy promotes the use of the technique in
real-world situations.

Keywords: Source localization, DOA, convolutional neu-
ral network, spherical harmonics, spherical microphone
array.
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1. INTRODUCTION

Direction of arrival (DOA) estimation is an important
problem in signal processing and has a wide range of
applications in fields such as radar, sonar, communica-
tion, and audio signal processing. The DOA estimation
problem involves estimating the angles of arrival of sig-
nals received at an array of sensors. This problem has
been studied extensively, and various algorithms have
been developed in this context [1]. The DOA estima-
tion algorithms can be broadly classified as time-delay-
based [2, 3], beamforming-based, and subspace-based ap-
proaches. Time difference of arrival (TDOA) estimates
the direction of arrival of the signal from the time dif-
ference measurements at which the signal arrives at the
spatially separated sensors. The accuracy of TDOA-based
DOA estimation depends on the accuracy of the time mea-
surements, which can be affected by various factors such
as clock synchronization, signal propagation delays, and
measurement noise. Beamforming methods use the spa-
tial filter concept and aim to extract the signal of inter-
est from the received signals by spatially weighting them.
The angle of arrival of the signal is estimated by find-
ing the direction in which the spatial filter has the highest
output power. Subspace-based methods exploit the signal
subspace and noise subspace to estimate the direction of
arrival. These methods assume that the signal subspace
is orthogonal to the noise subspace and use the eigenval-
ues and eigenvectors of the covariance matrix of the re-
ceived signals to estimate the signal subspace and noise
subspace. The angle of arrival is then estimated by finding
the direction in which the signal subspace has the high-
est power. MUltiple SIgnal Classification (MUSIC) [4]
is a popular subspace-based DOA estimation method that
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estimates the angle of arrival by finding the peaks in the
pseudo-spectrum of the received signals. These methods
mostly use the linear array. Therefore, the DOAs are es-
timated either in the horizontal or in the vertical plane.
DOA estimation using the SMA signals in the spherical
harmonics (SH) domain has been investigated to localize
the desired sources in the three-dimensional geometry [5].
The spherical harmonics (SH) domain also has several ad-
vantages, such as it provides a high spatial resolution in
the DOA estimation problem. This is because the spher-
ical harmonics can accurately represent spatial patterns,
allowing for a more precise estimation of the direction of
arrival of signals. The SH signals are robust to noise and
can reduce the computational complexity of DOA estima-
tion. Moreover, there have been significant advancements
in using learning-based methods for DOA estimation in
recent years. These models can learn complex features
and relationships from data and provide high accuracy in
DOA estimation. In this context, various learning-based
methods have been explored utilizing the SH phase and
magnitude as the desired features for training the learn-
ing models such convolutional neural network (CNN) in
[6, 7], support vector machines (SVM) in [8], and convo-
lutional recurrent neural network (CRNN) in [9]. A high-
resolution CNN and matching pursuit model is proposed
in [10]. Further, SH signals are analysed, and SH intensity
coefficients are explored in [11, 12] for far-field DOA and
near-field range estimations.

However, these methods did not consider the effect
of any undesired source acting as a directional interfer-
ence. The DOA estimation gets affected by the presence
of noise, and reverberation, along with other sources inter-
fering with the desired source signal. Figure 1 provides a
typical illustration of such a scenario. Few methods have
been explored to address this, such as attention models
employed for DOA estimation in [13–15]. Attention fo-
cuses on the frequency bands of desired directional sig-
nals [13]. In [14], the speaker beam’s attention mecha-
nism is a binary mask focusing on the intended sources’
dominant frequency ranges. In addition, a deep neural
network’s attention-based technique for source separation
in [15]. But these methods are limited to the linear arrays.
Therefore, [16] considers such cases when an undesired
source is present as directional interference, noise, and re-
verberation. This method explores the SH decomposition
of the SMA recordings. Also, in this case, DOA is esti-
mated using a CNN framework, and the mask generation
uses the conventional approach.

Thus, in this work, a real-time learning-based mask

estimation using the DNN framework along with the
CNN-based DOA estimation of only the desired source
in the presence of reverberation and diffuse noise is pro-
posed. The proposed approach deals with the DOA es-
timation in azimuth and elevation direction by consider-
ing the SH decomposition of signals received at SMA.
A neural network is trained to estimate both the direc-
tions. The CNN framework is considered, which learns
the proposed features. The CNN learns to map the ex-
tracted features corresponding to the class of desired DOA
angles. The signal received at the microphone contains
the desired sources as well as undesired sources. The ap-
proach filters out the features of the received signal when
the interfering undesired signals are dominant. Moreover,
the DNN-based mask implementation is real-time. It pro-
vides a robust and fast method for filtering out the un-
desired source signal and providing DOA cues only for
the desired signal. Therefore the filtered desired spherical
harmonics phase magnitude (SH-PM) features act as the
input data for training our neural network model, which
estimates the accurate DOA in the presence of reverbera-
tion and noise. This enhances the accuracy by providing
attention to the desired sources and thus improves DOA.

The rest of the paper is organized as follows. The
system model, basic definitions, and feature extraction are
given in section 2. Dataset generation and the learning
framework of the proposed model is presented in section
3. The performance of the proposed model is evaluated in
section 4 and section 5 concludes the work.

2. SYSTEM MODEL

This section presents a description of the generic sound
field data model in the SH domain, followed by an ex-
planation of the filtering criterion utilized to distinguish
sources in the context of source localization when an un-
desired source is present.

2.1 SH Decomposition

The present research considers an acoustic scene compris-
ing Q source vectors denoted by s = [s1, . . . , sQ]

T , lo-
cated at radial distances rs1, . . . , rsQ from the center of
the sound scene and oriented in the direction (θsq, ϕsq),
where q = 1, . . . , Q. The variables (θ, ϕ) are used to
represent the elevation and azimuth, respectively. The
methodology employed to capture the acoustic scene in-
volves the utilization of an SMA with a radius of r.
The SMA is comprised of L microphones arranged at
(θl, ϕl), l = 1, . . . , L. Given that the center of the SMA
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Figure 1: A typical acoustic scenario representing
the desired and undesired signal received at the mi-
crophone array.

is aligned with the center of the acoustic scene, the sound
pressure exerted on the SMA can be expressed as follows

P(k) = Y(θl, ϕl)B(kr)YH(θsq, ϕsq)s(k) + z(k) ∀ k.
(1)

The symbol k represents the wave number corre-
sponding to the frequency f̃ , where c is the sound veloc-
ity. P(k) = [p(k, θ1, ϕ1), . . . , p(k, θL, ϕL)]

T and z(k) =
[z1(k), . . . , zL(k)]

T represents the sound pressure vector
the noise vector, respectively and [·]T denotes transpose.
YH(θsq, ϕsq) ∈ C(N+1)2×Q represents the SH matrix for
the source positions and given by [17]

YH(θsq, ϕsq) = [yH
1 (θs1, ϕs1), . . . ,y

H
Q (θsQ, ϕsQ)]

y(θ, ϕ) = [Y00(θ, ϕ), . . . , YNN (θ, ϕ)]T

[·]H represents the conjugate transpose. The SH ba-
sis functions are denoted as Ynm(θ, ϕ) for order n =
0, . . . , N and degree m = −n, . . . , n. The order of SMA
is N and Ynm(θ, ϕ) is given as

Ynm(θ, ϕ) =

√
2n+ 1

4π

(n−m)!

(n+m)!
Pm
n (cos θ)eimϕ (2)

Pm
n (·) denotes the associated Legendre polynomial of or-

der n and degree m. Matrix Y(θl, ϕl) ∈ C(N+1)2×L,
corresponds to the directions of the microphones and is

defined in a similar manner as matrix Y(θsq, ϕsq). The
mode strength matrix B(kr) ∈ C(N+1)2×(N+1)2 denotes
the radial dependence of sound pressure and is mathemat-
ically defined as

B(kr) = diag(b0(kr), b1(kr), b1(kr), . . . , bN (kr))

bn(kr) = 4πin

[
jn(kr)−

j
′

n(kr)

h′
n(kr)

hn(kr)

]
(3)

where jn(·), h′
n(·) defines the spherical Bessel function

of first kind and spherical Hankel function of second kind
respectively. (·)′represents the derivative. The received
sound pressure by the SMA is decomposed in SH domain
for the known arrangement of the microphones. Mathe-
matically the sound pressure vector in the SH domain is
expressed as

Pnm(k) = B(kr)YH(θsq, ϕsq)s(k) + znm(k), ∀ k.
(4)

where znm(k) = YH(θl, ϕl)z(k) denotes the noise com-
ponent after SH decomposition. Subsequently, the SH
pressure components are multiplied by the inverse mode
strength matrix B−1(kr) on both sides of the equation (4)
to become radial dependency-free.

σnm(k) = YH(θsq, ϕsq)s(k) + z̃nm(k),∀k (5)

where z̃nm(k) = B−1(kr)znm(k). Moreover, in order to
analyze speech signals that vary over time, the short-time
Fourier transform (STFT) of the signal is utilised. Hence
the signal model is represented as

σnm(t, f) = YH(θsq, ϕsq)s(t, f)︸ ︷︷ ︸
σt

nm(t,f)

+ z̃nm(t, f)︸ ︷︷ ︸
σz

nm(t,f)

(6)

Where σt
nm(t, f) denotes the target component and

σz
nm(t, f) denotes the noise. t and f represent the num-

ber of time frames and the number of frequency bins, re-
spectively. The proposed work focuses solely on a sin-
gle intended direct sound source, while all other sources
are regarded as direct undesired, contributing to interfer-
ence. For the sake of ease of understanding σt

nm(t, f)
can be written as σt

nm(t, f) = σD
nm(t, f) + σU

nm(t, f).
σD

nm(t, f) and σU
nm(t, f) represents the STFT of the

desired source and undesired direct interfering sources.
Thus the data model in (6) is represented as
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Figure 2: Block diagram of the proposed method. The complete system model and preprocessing of the signal
received at the microphone. Ω̂ ∈ {θ̂, ϕ̂} represents the azimuth and elevation directions estimated from the
learning model.

σnm(t, f) = σD
nm(t, f) + σU

nm(t, f) + σz
nm(t, f) (7)

Estimating the DOAs of the desired direct source
σD

nm(t, f) in the presence of undesirable direct sources
σU

nm(t, f) and ambient noise σz
nm(t, f) is the aim of this

paper.

2.2 Source Filtering and Feature Extraction

This section describes the filtering process to remove the
undesired sources from the mixture received at the SMA.
Subsequently, the features are extracted only for the de-
sired source for its DOA estimation. The SMA signals
are the result of combining desired and undesirable source
signals with white Gaussian noise in a reverberant envi-
ronment. To locate the desired sound source, the SH-PM
map of the SMA signals is acquired. The SH representa-
tion for each microphone channel (η) is given as

Ψ(η) = ση(t, f), η = 1, . . . , (N + 1)2. ∀t, f (8)

where Ψ(η) ∈ RT ×F . σ = [σ1, . . . ,ση]
T are the SH

decomposed signals. T and F represents the number of
time and frequency components in a single frame. The
objective is to estimate the elevation and azimuth of the
desired source (θD, ϕD) and set aside the (θU , ϕU ) for Ψ.
In this context a binary mask filter is formulated that evicts
the features at the time-frequency bin where the undesired
source is dominant. Considering that the received signal
integrates the two source signals (desired and undesired),

separation of individual sources is required for mask esti-
mation. Therefore, to distinguish between the two sources
(desired and undesired), an un-mixing matrix is estimated
iteratively. Subsequently the estimates of the direct source
σ̂ = [σ̂D, σ̂U ]T are calculated using the observation P and
the corresponding expression is [18]

σ̂ = W P̃ (9)

where W is the unmixing matrix and P̃ is the white lin-
ear transform of P , i.e. E[P̃P̃T ] = I. The whiten ob-
servations are given by P̃ = V Σ−1/2V TP . Here V
denotes the eigen-vectors orthogonal matrix, and Σ de-
notes the eigen-values diagonal matrix. The eigen value
decomposition (EVD) provides the values of V and Σ,
i.e. E[PPT ] = V ΣV T . The components in the un-
mixing matrix W = [w1, . . . ,wQ]

T are computed itera-
tively. Following each iteration, the projection of obtained
component with the previous components is obtained and
subtracted from the present component. Then the obtained
component is normalized. These operations are discussed
in detail in [16].

Therefore, the binary filter g(BF )(t, f) can be ex-
pressed as

g(BF )(t, f) =

{
1 if R(BF ) ≥ νth
0 otherwise

(10)

where R(BF ) is the ratio to obtain the mask and is op-
timized by the DNN, and νth ∈ [0, 1] is the threshold.
In this paper, a DNN-based binary filter is designed for
this purpose to obtain real-time masks. The DNN frame-
work for mask estimation and the loss function to opti-
mize R(BF ) is discussed in section 3.1. So, the features of
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desired sources are obtained by suppressing the predom-
inate feature components of the interfering direct source
for training the CNN model. These characteristics are de-
noted as follows

Ψ
(η)
BF = ση(t, f)g

(BF )(t, f); η = 1, . . . , (N + 1)2

(11)
Figure 2 illustrates the complete end-to-end block di-

agram of the proposed model for source separation, ex-
tracting the features, and learning architecture.

3. LEARNING FRAMEWORK AND DATASET
GENERATION

This section addresses the learning model developed for
the estimation of the mask for filtering out the undesired
source signal and another learning model for the DOA es-
timation using CNN architecture. Figure 3 depicts the net-
work design for both DNN and CNN. Also the experimen-
tal conditions for the simulated as well as real-time dataset
generation is discussed herein.

3.1 Learning Framework for Mask Estimation

For obtaining the binary mask mentioned in equation (10),
a DNN is trained for each channel. The input to the DNN
is the received SMA signal |σnm(:, :)|. It has a feed-
forward output layer with sigmoid activation that calcu-
lates a ratio mask R(BF ) ∈ [0, 1] and three bidirectional
long short-term memory (BLSTM) layers consisting of
1200 neurons per layer. To train the DNN, the mean-
squared error (MSE) loss function (L) is minimized for
each channel. The MSE is taken between the desired and
estimated (received microphone signal multiplied with ra-
tio mask) signals and is defined as

L =

F∑
f=1

T∑
t=1

(|σ̂D
nm(t, f)| − |σnm(t, f)|.R(BF ))2

T.F
(12)

where T and F are the total number of time and fre-
quency frames, and σ̂D

nm(t, f) is the direct sound of the
desired source signal, obtained from equation (9). The bi-
nary mask (g(BF )) is finally obtained as given in equation
(10).

3.2 Learning Framework for DOA Estimation

After breaking down the signal into its component SH do-
mains, the proposed work develops an SH-CNN model

Figure 3: The DNN model for mask generation and
the CNN model for learning and estimating DOA of
desired sources.

for DOA estimation. The DOA is estimated only for the
desired sources after eliminating the undesired sources by
filtering using the masks obtained from the previous sec-
tion. The convolutional network improves the classifica-
tion of the data by automatically identifying the key pat-
terns in the input features, resulting in robust learning.
The input characteristics used to train the CNN model are
the SH magnitude and phase coefficients. The appropriate
azimuth and elevation classes are given to the input SH
features. Following batch normalisation and max-pooling,
the CNN network consists of three convolutional layers
and two dense layer. With the exception of the output
layer, each layer’s activation function is a rectified linear
unit (ReLU). The maximum probability determines the
azimuth or elevation estimations, and the likelihoods cor-
responding to each class are obtained in the output layer
using the softmax activation function. Furthermore, the
dense layer’s dropout is used to prevent over-fitting. In
the work that is being presented, a dropout of 0.20 is used
in the dense layer. The output layer gives the source’s az-
imuth and elevation DOA estimates.

3.3 Experimental Conditions and Dataset Generation

Extensive simulation is carried out for generating data us-
ing the SMA impulse response (SMIR) generator. The
simulation room is 5 m by 6 m by 7 m in size, with a vari-
ance of ±2 m in each dimension. The reverberation time
(RT60) is randomly selected from (0.2 − 1)s. The train-
ing data also includes random white noise with an SNR ∈
[0 − 20]dB, in addition to the reverberation. The sources
and SMA are positioned with a minimum angular separa-
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Figure 4: Illustration of accuracy (ACU) (in dB) by varing SIR, for N-M, NL-M, and DNN-M localization
methods for (a) Azimuth estimation and (b) Elevation estimation.

Table 1: Performance analysis RMSE [◦] for DOA
estimation of desired source. (Ω)D ∈ {θD, ϕD} is
the desired source and ΩU ∈ {θU , ϕU} is the unde-
sired source

ϕD = 60◦, θ = 30◦ θD = 60◦, ϕ = 30◦

ϕU SIR N-M NL-M DNN-M θU SIR N-M NL-M DNN-M

45◦

5 4.6 3.8 3.2

45◦

5 4.6 3.4 3.1
10 4.3 3.5 3.2 10 4.2 3.4 3.2
15 4.2 3.1 2.7 15 4.2 2.9 2.7
20 4.1 2.8 2.6 20 4.1 2.7 2.5

150◦

5 2.9 1.4 1.3

150◦

5 3.1 1.3 1.2
10 2.8 1.3 1.1 10 3.1 1.2 1.1
15 2.6 1.2 1.0 15 2.6 1.1 1.1
20 2.3 1.1 0.8 20 2.3 1.1 0.8

tion of 5◦ and a distance between them that varies from
2 to 5 m. The LIBRISPEECH [19] and FSDNOISY18K
[20] libraries are used to choose the desirable and unde-
sirable sources, respectively. Signal-to-interference ratio
(SIR) ∈ [0−20] dB is used to integrate the two directional
source signals. For the training data generator, source sig-
nals that are 1s long and sampled at 16 KHz are taken
into consideration. An Eigenmike [21] is used to acquire
sound scenes. The Eigenmike is made up of a 32 flush-
mounted microphone placed over an order 4-hybrid rigid
sphere that measures 4.2 cm in diameter. STFT is used
to examine the received signals in the frequency domain
with a Hanning window that has a 512 length and a 50%
overlapping.

4. PERFORMANCE ANALYSIS

The performance of the proposed DNN masking (DNN-
M) method is discussed in this section. The recordings
from the SMA are taken and the DNN-based mask is ap-
plied to it for separating the undesired source and then the
filtered signal is given as input to the CNN model to esti-
mate the DOAs. The performance is compared with [16]
where mask estimation is not done by learning method
i.e. no learning masking (NL-M). Also the performance
is compared with the case if no masking (N-M) is applied
and the recording containing the mixture of sources is di-
rectly given as CNN input for DOA estimation.

4.1 Numerical Analysis

Extensive simulations are carried out for analysing the
performances of various methods. Root mean square er-
ror (RMSE) and accuracy (ACU) are considered for the
comparison of the performances. The RMSE and ACU
are expressed as

ACU(%) =
δ̂

δ
× 100

RMSEΩ =

√√√√1

δ

δ∑
i=1

(Ωi − Ω̂i)2 (13)

where δ are total number of DOAs and δ̂ are accu-
rately estimated DOAs. Ω ∈ {θ, ϕ} are given elevation
or azimuth angles and Ω̂ ∈ {θ̂, ϕ̂} are estimated eleva-
tion or azimuth angles. The method proposed, DNN-M, is
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Figure 5: Experimental lab set up for acoustic data
acquisition

Table 2: Results for the experimental setup at IIT
Kanpur of DOA estimation for the three test cases

Test cases ΩD ΩU Metric N-M NL-M DNN-M
C-I 45◦, 60◦ 90◦, 150◦ ACU 50.8 75.0 78.6

RMSE 5.4 4.1 3.5
C-II 30◦, 290◦ 110◦, 55◦ ACU 51.2 76.6 79.9

RMSE 5.4 3.9 3.3
C-III 120◦, 70◦ 120◦, 25◦ ACU 50.5 74.8 78.0

RMSE 5.5 4.2 3.6

compared with the case which filters the undesired source
without learning-based masking, i.e. NL-M [16] and the
case when DOA is estimated even without suppressing the
undesired source, i.e N-M. The evaluation of the perfor-
mance for all the methods is done at various signal to in-
terference ratio (SIR) between [0− 20] dB for azimuth as
well as elevation model as shown in Fig. 4. Also, RMSE
values showing the performance of these methods at dif-
ferent test cases for elevation and azimuth angles is shown
in Table 1. The figures and table show that the proposed
method performs best in all the cases. The performance
is much improved than in the N-M case. Moreover, when
compared with the NL-M case, the DNN-M case is better
because the DNN mask is estimated using the regression
approach utilising the optimized mask values to suppress
the undesired source. The DNN-optimized mask is better
than the conventional mask, which is not well-optimized.
Therefore, achieved results are much improved and hence
motivating to use for various applications.

4.2 Experimental Results

The experimental analysis for the real-time recordings are
also carried out in the lab environment. Figure 5 shows

the set-up arranged in the MiPS lab at IIT Kanpur for the
experimental verification of the proposed method. Three
test cases are taken, C-I, C-II, and C-III, mentioned in
Table 2. For the direct desirable and direct undesired
interfering sources, respectively, audio files of 5 s dura-
tion are selected from the LIBRISPEECH [19] and FSD-
NOISY18K [20] libraries. Table 2 contains the numerical
results for the ACU and RMSE. When compared to the
N-M approach, the proposed method exhibits a consider-
able reduction in RMSE and significant improvement in
ACU for the real-time tests. Also there is an improve-
ment in the DNN-M approach as compared to the NL-
M method. These findings indicate that the suggested
method can effectively distinguish between the interfer-
ence and the source, which is necessary for accurate DOA
estimation in both azimuth and elevation directions using
SH decomposition.

5. CONCLUSION

This research focuses on a learning-based approach to
acoustic source localisation in environments where direc-
tional interference from an unwanted source is present.
SH decomposition is used to get the SH-PM features that
match the SMA recordings. In order to generate training
datasets, DNN is used to generate a binary mask based on
the SH characteristics. Both simulated and real-world test
scenarios are used to assess the effectiveness of the sug-
gested approach. The accuracy in low SIR situations is
much enhanced by the proposed technique. The proposed
method is useful for a wide range of purposes, includ-
ing but not limited to voice enhancement and localization,
teleconferencing, augmented and virtual reality, and more.
Future work will expand on this to account for cases with
numerous strongly interfering directional sources.
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