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ABSTRACT

If the wavelength is small compared to the characteristic
size (e.g., mean free path) of a system component, it can
be modelled as diffuse. Recently, a method of analysis
was developed to compute the detailed response field of
built-up systems containing both diffuse and deterministic
vibro-acoustic components. In this method, diffuse field
realizations are generated in a Monte Carlo framework,
from which the joint probability density function of the re-
sponse can be obtained. The approach is computationally
efficient because the natural frequencies and mode shapes
of the diffuse components are directly drawn from uni-
versal probability distributions: the local eigenvalue spac-
ings conform to the Gaussian Orthogonal Ensemble and
the mode shapes are zero-mean Gaussian random fields.
So far, only discrete couplings between system compo-
nents have been investigated, whereas in practical appli-
cations, components may be coupled over a domain (e.g.,
the surface of a plate when coupled with an acoustic vol-
ume). In this contribution, domain couplings are estab-
lished by generating realizations of coupling terms ap-
pearing in the coupled equilibrium equations. The prob-
ability density functions of these coupling terms are de-
rived analytically to enable computationally efficient real-
izations. The method is applied to analyze the sound field
in an aircraft cabin.
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1. INTRODUCTION

Diffuse or reverberant field models are widely employed
for vibro-acoustic analysis at high frequencies because of
their computational efficiency and because they inherently
account for uncertainty related to small spatial variations
in geometry, material properties, or boundary conditions,
having a wave scattering effect. Statistical Energy Anal-
ysis (SEA) is frequently employed for analyzing built-up
systems with diffuse components. When a system is ana-
lyzed with SEA, the total ensemble averaged vibrational
energy in each of the diffuse components is obtained.
Vibro-acoustic systems with domain couplings have been
previously analyzed using the hybrid deterministic-SEA
framework [1]. However, the capabilities of SEA-related
approaches to analyze built-up systems with diffuse com-
ponents have some limitations, such as: the displacement
fields are not modelled but only the related energies, the
joint response probability function is not available, and
the computational efficiency decreases when there is ad-
ditional parametric uncertainty.

A new method of analysis that overcomes those lim-
itations was recently developed [2, 3]. Instead of model-
ing diffuse fields in the conventional way, a Monte Carlo
(MC) technique is employed. Samples of the natural fre-
quencies and mode shapes of the decoupled diffuse sub-
systems are directly obtained with a Gaussian random
number generator, as they relate to a Gaussian Orthogo-
nal Ensemble (GOE) matrix and a Gaussian random field,
respectively. This method has been termed the GOE-MC
method. However, the approach as presented in [2, 3] be-
comes computationally costly for domain couplings be-
tween components as modeshape realizations are needed
over the entire area junction. Generation of diffuse mode-
shapes can be efficiently performed for acoustic cavities
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by making use of prolate spheroidal wave functions, as
demonstrated in [4], but still requires their storage and
processing.

In the present work, the statistics of the coupling
terms is derived such that realizations of these terms can
be made instead of the modeshapes. This is computation-
ally efficient as (i) no modeshape realizations over the en-
tire area junction need to be computed and (ii) the inte-
gration of the modeshapes over this area does not need
to be repeated for every realization. In this paper, fluid-
structure domain coupling is discussed first. The GOE-
MC methodology is used as framework for the presented
approach and is described next. Then, the statistics of
the coupling terms are discussed. Finally, an example of
sound radiation by an aircraft fuselage to the cabin illus-
trates the presented approach.

2. FLUID-STRUCTURE DOMAIN COUPLING

Consider a built-up system consisting of a mixture of
acoustic and structural system components. The response
in the system components is computed here using the
assumed-modes method. In the assumed-modes method,
the pressure fields of the acoustic volumes pa and the vi-
bration field of the structural surfaces u at angular fre-
quency ω are approximated into a finite set of modeshapes
φpi(x) and φui(x):

p̂(x, ω) =
∑
i

φpi(x)qpi(ω), (1)

û(x, ω) =
∑
i

φui(x)qui(ω). (2)

The generalized pressure qpi(ω) of the acoustic volume Ω
with prescribed generalized displacements quk(ω) acting
on its boundaries ∂Ωi can be obtained from:(

ω2
pi − ω2

)
qpi +

∑
k

Kpu,ikquk = f̂pi (3)

with Kpu,ik = −ρω2

∫
∂Ωi

φpiφwkdx, (4)

where ω2
pi are the eigenvalues of the pressure field in the

acoustic component, f̂pi the modal pressure loading, and
φwi = φui · n with n the normal to the fluid-structure
interface. Similarly, the generalized displacements of the
structural components coupled with acoustic subsystems

follow from:(
ω2

ui − ω2
)
qui +

∑
k

Kup,ikqpk = f̂ui (5)

with Kup,ik =

∫
∂Ωi

φwiφpkdx, (6)

where ω2
ui are the eigenvalues of the displacement in the

structural system component. The coupled fluid-structure
analysis consists of solving Eq. (3) and (5) simultaneously
for the different system components.

3. THE GOE-MC METHODOLOGY

The GOE-MC approach is now used to obtain the re-
sponse of built-up systems containing components that
are either entirely deterministic or entirely diffuse. It uses
Monte Carlo (MC) simulations, in which each sample rep-
resents the realization of a diffuse field. The response for
every realization is computed based on the fact that the
statistics of the local eigenvalue spacings are those of the
GOE, while the modeshapes are Gaussian random fields.

The procedure for generating the natural frequencies
is summarized below, and can be found in detail in [3].
Note that to perform the analysis across the entire fre-
quency range of interest, the range of computed natural
frequencies is larger than the frequency range of analysis
as some out-of-band modes should also be considered.

The first step is to estimate the number of expected
eigenfrequencies Nint = N(ωu) up to the upper fre-
quency ωu. The mode count can be obtained from the
modal density:

N(ω) =

∫ ω

0

n(ω′)dω′. (7)

The second step is to make realizations of a Gaussian
Orthogonal Ensemble (GOE) matrix with a random num-
ber generator. The GOE matrix is a real symmetric matrix
with independent, centered Gaussian random variables as
entries: the diagonal entries have variance 2σ2

G and the
off-diagonal entries have variance σ2

G, where the parame-
ter σG serves to specify an eigenvalue scale. The size of
the GOE matrix should be such that the number of rows
or columns nG is considerably larger than the number of
eigenfrequenciesNint. Subsequently, its eigenvalues need
to be computed. Alternatively, previously computed and
tabulated GOE eigenvalues can be re-used as the eigenval-
ues do not depend on any physical properties.
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The third step is to determine the range of GOE eigen-
values [−λGl, λGl] such that the cumulative count func-
tion NG(λGl) equals Nint. Based on an expression for the
density of the GOE eigenvalues for nG → ∞ as proven
by Wigner [5], the cumulative count function is obtained
as:

NG(λG) =
nG

πr2
G

(
λGl

√
r2
G − λ2

Gl + λG

√
r2
G − λ2

G

)
+
nG

π

(
arcsin

λGl

rG
+ arcsin

λG

rG

)
(8)

with rG = 2σG
√
nG.

Finally, the GOE eigenvalue realizations are trans-
formed into the physical subsystem’s eigenvalue realiza-
tions λ := ω2

λ = N−1 (NG(λG)) (9)

4. COUPLING TERM REALIZATIONS

In contrast to [3], where diffuse modeshapes were gen-
erated, realizations of the coupling terms can be gener-
ated as will be demonstrated. The advantage is that the
modeshapes do not need to be generated and the integra-
tion over the coupling area does not need to be performed
for each realization. This makes this approach computa-
tionally efficient for surface couplings between acoustic
and structural components.

The coupling termsKpu,ik andKup,ik in Eqs. (3) and
(5) depend on the modeshapes of the system components,
which in high-frequency regime are zero-mean, Gaussian
random fields. The coupling terms are related (Kpu,ik =
−ρω2Kup,ki), so the computation of one of the coupling
terms is sufficient to obtain both. As the modeshapes are
zero-mean Gaussian random fields, the coupling terms are
also Gaussian with following statistics:

E [Kup,ik] = 0, (10)

E
[
K2

up,ik

]
=

∫
∂Ωi

∫
∂Ωi

Cwi(x,x
′)Cpk(x,x′)dxdx′. (11)

If the spatial covariance functionsCkj(x,x′) of the mode-
shapes of the diffuse component(s) are known, these inte-
grals can be computed directly. The main advantage here
is that the integration over the surface only needs to be
performed once, and therefore not for every mode shape
realization.

For diffusely reflecting boundaries, the mode shapes
φkj of system component k are statistically homogeneous,

i.e., the statistics of the mode shape components are in-
dependent of their position. The corresponding random
wave field is a diffuse field. The covariance function of a
diffuse field can be obtained from the free-space Green’s
function G∞(x,x′;ω), i.e., the frequency response func-
tion of the corresponding unbounded system [6]:

Ckj (x,x′) = E [φkj(x)φkj(x
′)] (12)

=
−2ωkj
πnk(ωkj)

Im {G∞(x,x′;ωkj)} . (13)

In homogeneous and isotropic media, the evaluation of
Eq. (13) results in the following expressions:

Ckj (x,x′) =


Ak cos(kkj ||x− x′||) for 1D systems
AkJ0(kkj ||x− x′||) for 2D systems
Akj0(kkj ||x− x′||) for 3D systems

(14)
which corresponds to expressions found in e.g. [7]. In
these expressions, J0(x) denotes the Bessel function of
the first kind and order zero, j0(x) = sin(x)/x is the
spherical Bessel function of the first kind and order zero,
kkj := 2π

λkj
denotes the wavenumber corresponding to the

wavelength λkj of mode j for system component k, and
Ak is a factor that is independent of position, which can be
determined from the mode shape normalization condition.
For acoustic subsystems, the normalization to unit modal
mass yields Ak = c2/Vk with c the wave speed and Vk
the total volume of the subsystem. The correlation func-
tion (14) depends only on the distance between the con-
sidered mode shape components, the wavelength, and the
normalization condition. When the distance between x
and x′ is large compared to the wavelength λkj , it follows
from the above expressions that in two-dimensional and
three-dimensional subsystems, the mode shapes evaluated
at these distinct points are approximately uncorrelated.

5. EXAMPLE

5.1 Problem description and finite element model

We illustrate this approach by computing the interior noise
in a section of an aircraft cabin, as presented in [8]. It con-
sists of a part of the aircraft fuselage that is excited at its
wing connections, resulting in sound radiation radiated in-
side the cabin. The fuselage has a radius of R = 1.866 m
and is built up from t = 1.125 mm thick flexible panels
which are riveted to a stiffening frame. The geometry of
this stiffening frame matches the airframe layout of a DC-
8 fuselage as documented in [9].
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The circumferential frames are located every 0.508 m
in the axial direction and consist of Z profiles with a thick-
ness of 1.125 mm, a height of 63.5 mm, and a flange
width of 20.3 mm at both sides. Attached to these Z pro-
files are L profiles with a thickness of 1.125 mm and a
length of 91.6 mm every 183.2 mm. They have a height of
63.5 mm, a width of 20.3 mm and they protrude 25.4 mm
above the Z profiles. Hat-shaped longitudinal stringers are
located on top of the Z profiles and have a thickness of
1.125 mm. They have a height of 25.4 mm, while the hat
and the two brims all have a width of 16.9 mm.

The aircraft fuselage is modelled using finite elements
in Ansys, as illustrated in Fig. 1. Only a section of length
Lz = 1.524 m is modelled. A zero displacement is there-
fore imposed along the axial direction (z = 0 and z = Lz)
to emulate the fact that the section is part of a much larger
structure. Furthermore, since the section is considered to
be symmetric, only a quarter section is modelled. Sym-
metry boundary conditions are therefore applied along the
longitudinal boundary conditions (x = 0 and y = 0). This
means that the displacements in the direction perpendic-
ular to the plane of symmetry are imposed to be zero, as
are the rotations around the other two axes. The structural
components are produced out of an aluminium alloy with
a Young’s modulus of 70 GPa, a Poisson’s ratio of 0.3, a
mass density of ρs = 2790 kg/m3, and a damping ratio of
0.01.

The fuselage is coupled to the acoustic cavity in-
side the aircraft. Along all faces of this acoustic cav-
ity, zero normal velocity conditions are imposed. The
cavity is filled with air, which has a mass density ρa =
1.1225 kg/m3 and a speed of sound c = 340 m/s. The re-
verberation time in the cavity is assumed to equal 1.0 s at
all frequencies. In order to excite the system, two beams
with a very high bending and torsional stiffness are at-
tached to the fuselage (Fig. 1) and a unit structural point
force is exerted at the endpoint where the beams meet, i.e.
at (2.7990 m, 0.9593 m). This corresponds to a simplified
representation of the shear forces and bending moments
introduced by the wings on the fuselage connections.

The mode count of the fuselage is displayed in Fig. 2.
Below 200 Hz, there are only 8 modes, some of which
are displayed in Fig. 3. The modal behaviour of the fuse-
lage is therefore expected to play an important role in this
frequency range. The first modes displayed in Fig. 3 are
global flexural modes. At higher frequencies, local modes
start to exist (e.g., mode 10), where the main deflection is
situated between the stiffeners, i.e., at the flexible plate
parts. From about 200 Hz, local modes exist, and the

Figure 1. Finite element model of the DC-8 aircraft
fuselage.

mode count increases rapidly, up to 175 at 500 Hz. This
means that the modal behaviour of the fuselage becomes
less important.

5.2 Numerical models

In an aircraft cabin, many wave scattering elements (e.g.,
seats, suitcases, passengers, etc.) are present. In this
example, the cabin is assumed to have a random acous-
tic mass distribution in the sense that a total of 20 point
air pockets (or acoustic point masses) are distributed at
random locations within each room. The air pockets are
highly idealized models for small wave scatterers in the
room, in the same way as point masses would be highly
idealized models for small wave scatterers on a plate.
Each air pocket has 2 % of the total acoustic mass V/c2

of the room. The probability distribution of the location
of each air pocket is uniform throughout the entire room,
and the locations of the air pockets are statistically inde-
pendent.

The total number of air pockets and their individual
acoustic mass are chosen arbitrarily; the important point
is that, from a certain frequency onwards, the randomness
introduced by the wave scatterers reaches a state of max-
imum information entropy, which conforms to a diffuse
field. With a larger number of masses and/or a higher in-
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Figure 2. Mode count of the aircraft fuselage.

dividual acoustic mass, this state would occur already at a
lower frequency than in the present case.

Two stochastic models for the cabin are constructed,
and the mean and variance of the predicted quantities such
as the spatially averaged (over the entire room volume)
sound pressure level, are subsequently compared.

The first room model is a detailed model, in which
both the point air pockets and the modal behaviour of the
cabin are modelled in detail. In this method, random wave
scatterers are modelled explicitly. This requires a detailed
model of the system components, which can be obtained
with e.g. the finite element method [10–12] for compo-
nents of arbitrary complexity, or the Lagrange-Rayleigh-
Ritz method [13, 14] for simple system components. As
the wave scatterers are modelled explicitly, this yields the
exact response, which is therefore considered to be the
reference solution with which the presented approach can
be compared. Because of its computational efficiency,
the Lagrange-Rayleigh-Ritz method is often employed in
conjunction with Monte Carlo (MC) simulation for gen-
erating reference solutions for systems with small random
wave scatterers [2, 15–17]. It is therefore termed here the
detailed MC method.

The second room model is a diffuse field model that
is constructed as detailed in this paper and is termed the
GOE-MC approach. In this model, the random wave scat-
tering caused by placing the point air pockets at random
locations within the room, is supposed to result in a dif-
fuse sound field. The structural fuselage is then modelled
deterministically with the finite element model from the
previous section, while the cabin is modelled as diffuse.
The two parameters needed for the numerical computa-
tions are the modal density or mode count and the spatial

mode correlation function of the cavity. For the latter, the
expression in Eq. (14) for 3D systems is used. For the
mode count, the following expression is used [18]:

N(f) =
4πV

3

(
f

c

)3

+
πS

4

(
f

c

)2

+
P

8

f

c
, (15)

where, in this case, V = πR2Lz/4, S = πR/2+πR2/2+
2RLz and P = πR+ 4R+ 3Lz .

Note that in a diffuse field model, the physical mech-
anisms behind the wave scattering are not important. This
second model would therefore provide exactly the same
results when the random wave scattering would be caused
by other types of wave scatterers than point air pockets,
such as small hard objects of any shape, or irregular room
boundaries. For this reason, the properties of the scatter-
ing elements (in the present case, the point air pockets) are
not employed in the diffuse field model.

5.3 Sound radiation into the aircraft cabin

Using both models detailed in the previous section, the
coupled system of Eqs. (3)-(5) is solved and the total en-
ergy E of the cabin is computed from:

E =
1

4ρω2

∑
i

(
ω2 + ω2

pi

)
|qpi|2. (16)

Figure 4a-b display the ensemble average and the
variance of the total energy in the room computed with
the detailed MC approach and the presented GOE-MC
approach. For the mean energy, a good agreement be-
tween both is obtained. The modal peaks corresponding
to the modes of the fuselage (Fig. 3) are clearly distin-
guishable for both models. Some deviations at low fre-
quencies are present as a result of the modal behaviour
of the acoustic cavity, whose modal density is still very
low and influence the interaction between the fuselage and
the cavity. The variance of the total energy is well pre-
dicted at higher frequencies, but is overestimated by the
diffuse field model at the lowest frequencies. This is be-
cause in that low-frequency range, the sensitivity of the lo-
cal harmonic sound field to the presence of the small ran-
dom wave scatterers (point air pockets) is relatively low,
and a diffuse field model will overestimate the uncertainty
caused by these random wave scatterers. However, once
this sensitivity is sufficiently large, the diffuse field model
is adequate.

For each Monte Carlo sample (both in the detailed
MC and GOE-MC approach), the sound pressure level is
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(a) f1 = 8.6 Hz (b) f2 = 44.1 Hz (c) f3 = 94.5 Hz

(d) f5 = 155.3 Hz (e) f7 = 184.5 Hz (f) f10 = 201.4 Hz

Figure 3. Illustration of some modes of the aircraft fuselage.

obtained from the relation between the total energy and
the time- and space-averaged squared sound pressure p2

av

in diffuse fields [19]:

E =
p2

avV

ρc2
. (17)

The sound pressure level is then obtained from the time-
and space-averaged squared sound pressure p2

av:

Lp = 10 log
p2

av

p2
0

, (18)

where p0 = 20µPa.
Figure 4c-d display the ensemble average and the

variance of the sound pressure level computed in this way
with both methods. The same conclusions can be made
regarding the variance of the sound pressure level. How-
ever, the ensemble average of the sound pressure level is
now underestimated by the GOE-MC approach. The rea-
son is related to the fact that the mean of a logarithm is

not equal to the logarithm of the mean. Instead, the mean
of a logarithm depends both on the mean and variance of
the argument. As the variance of the energy is overesti-
mated at low frequencies, the mean of the logarithm of
the energy, or the sound pressure level, is underestimated.

One advantage of the presented GOE-MC approach
is that the probability density function can be estimated.
This is illustrated in Figure 5 for the total energy in the
cavity at six frequencies going from 150 Hz to 400 Hz in
increments of 50 Hz. Although there is a small shift in the
curves related to the predicted mean energy that is slightly
under- or overestimated, the shape of the probability den-
sity function is usually well predicted, with a distinctive
right tail.

6. CONCLUSIONS

In this contribution, the statistics of coupling terms have
been derived for vibro-acoustic built-up systems with do-
main couplings between diffuse and deterministic compo-
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Figure 4. Ensemble average (left: (a) and (c)) and variance (right:(b) and (d)) of the total energy (top: (a)
and (b)) and sound pressure level (bottom: (c) and (d)) in the acoustic cavity. The results of the detailed MC
approach are indicated with grey lines, the results of the GOE-MC approach with black lines.
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Figure 5. Probability density function of the total energy in the acoustic cavity at 6 frequencies. The results of
the detailed MC approach are indicated with grey lines, the results of the GOE-MC approach with black lines.
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nents. The response of these systems has been obtained
by generating these coupling term realizations. The pre-
sented approach is validated for the problem of sound ra-
diation into an aircraft cabin. It is illustrated that the dif-
fuse field modelling approach is able to correctly predict
the probability distribution of energetic quantities, except
at very low frequencies, where the small random wave
scatterers have a minor influence on the local sound field,
and the diffuse field model overestimates the related un-
certainty.
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