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Mihály Ádám Ulveczki1∗ Péter Rucz1
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ABSTRACT

The co-rotating vortex pair is a well-known test problem
for validating aeroacoustic computational frameworks.
Both the flow field and the radiated acoustic far-field can
be determined analytically, which allows for the direct
comparison of all associated quantities. However, in or-
der to simulate the vortex pair using numerical methods,
several approximations must be made. One problem is
caused by the singular velocity field at the center of the
potential vortex, which must be treated by desingulariza-
tion that also affects the resulting source terms. Another
challenge in finite element formulations is the handling
of the unbounded domain, which needs to be artificially
truncated.

In our paper, the numerical aspects of the vortex pair prob-
lem are examined. The effects of the necessary approxi-
mations including the desingularization of the vortex-core
and discretization to different computational methods are
investigated. A method relying on the direct integration
of the source terms is compared to different finite element
solution strategies. Convergence tests are carried out and
discussed for formulations of Lighthill’s equation and the
perturbed convective wave equation in the frequency do-
main.
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1. INTRODUCTION

In the hybrid computational aeroacoustic (CAA) frame-
work, which is the commonly applied technique for the
numerical simulation of sound radiation by low Mach
number, weakly coupled flows, the acoustical quantities
are determined in a series of computational steps. First, an
incompressible flow simulation is performed, from which
a sound source field is computed making use of an aeroa-
coustic analogy. Then, the propagtion of sound waves
emitted by the sources is computed. The mismatch of
the length-scales of the flow and the acoustic fields ne-
cessitates different spatial discretizations for the flow and
acoustical propagation domains, which also requires the
interpolation of the sources from the flow mesh onto the
acoustical mesh. As the procedure involves a number of
subsequent numerical approximations, it is very useful to
have a validation case, where the effect of each of the
above steps can be assessed.

The co-rotating vortex pair is a common test case for
aeroacoustic simulations. It is one of the few arrange-
ments where both the flow field and the far field radiated
sound pressure can be determined analytically. This also
allows for comparing different solutions for calculating
the radiated field, as it is shown later in this article. Thus,
the vortex pair is an important case for validating a hybrid
CAA implementation. Nevertheless, the treatment of po-
tential vortices in a numerical simulation must involve a
desingularization, which can lead to deviations from the
analytical solution in the far field radiated pressure. The
aim of this paper is to examine the effects of the param-
eters of the vortex pair on the achievable convergence to
the analytical solution. A numerical convolution method
is introduced and the effect of different discretization con-
figurations are discussed and compared to each other. The
convergence study also provides a reference result for test-
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ing further computational techniques, such as the finite el-
ement method (FEM).

The simulation setup and the analytical solution are
discussed first in Section 2, and then the desingularization
approach is also considered there. Section 3 introduces the
methods applied for attaining the aeroacoustic sources and
the simulation of sound propagation. The convergence
analysis of a numerical convolution method is presented
in Section 4, highlighting the effects of the desingulariza-
tion on the achievable accuracy compared to the analytical
solution. A finite element case study is addressed in Sec-
tion 5 and a comparison to the converged results of the
numerical convolution is made. Finally, the paper is con-
cluded by the brief summary of Section 6.

2. PROBLEM DEFINITION

2.1 Co-rotating vortex pair

The co-rotating vortex pair consists of two potential vor-
tices. The vortices rotate counterclockwise with a given
circulation Γ, which also causes the two vortices to move
as a pair in a circular arc of radius r0 with respect to
the geometric centre of the model, also counterclockwise.
The angular frequency of the rotation is Ω0 = Γ/(4πr20).
At the time instance t = 0, the vortices are aligned with
the x axis. This arrangement is shown in Fig. 1.

The far field radiated sound pressure p of the vortex
pair is derived by the matched asymptotic expansion tech-
nique [1] and is found as:

p(r, θ, t) =
ρ0Γ

4

64π3c20r
4
0

[
J2(k0r) sin(2Ω0t− 2θ)

− Y2(k0r) cos(2Ω0t− 2θ)
]
, (1)

where r and θ are the polar coordinates, ρ0 is the equlib-
rium density of the fluid, k0 = 2Ω0/c0 is the wave num-
ber with c0 denoting the speed of sound in the free field,
and J2 and Y2 are Bessel functions of the first and second
kind, respectively. Eqn. (1) specifies a quadrupole field,
which is shown in Fig. 2 at a given time instance. For
evaluating the numerical approaches presented in the se-
quel, the solutions are compared on a reference section
which is aligned with the x axis and spans λ ≤ r ≤ 8λ,
where λ = πc0/Ω0 is the acoustical wavelength.

2.2 Desingularization

In a numerical framework the treatment of the potential
vortex is problematic due to the infinite velocity at the

Γ

Γ

Ω0

r0

Figure 1. Arrangement of the co-rotating vortex pair

Figure 2. Analytical solution in a specific time and
the evaluation line (black)

vortex core. To mitigate this issue, the vortices must be
desingularized. One commonly applied approximation is
the Scully vortex model [2], which gives the velocity field
(u, v) of a single vortex as:

u =
Γ

2π

−(y − y0)

(x− x0)
2
+ (y − y0)

2
+ r2c

v =
Γ

2π

(x− x0)

(x− x0)
2
+ (y − y0)

2
+ r2c

(2)

x0 and y0 are the coordinates of the center of the vortex,
while the rc is the core radius. If rc = 0, we obtain the
singular solution, where the velocity approaches infinity
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close to the center of the vortex.
Consider that when using the Scully model, the choice

of rc will exactly halve the velocity at r = rc distance.
While the desinguarlization allows for the numerical treat-
ment of the vortex pair problem in a CAA framework, it
also affects the radiated sound pressure field, whilch will
deviate from the analyical solution (1), as shown in the
sequel.

3. METHODOLOGY

As discussed in the introduction, in hybrid CAA several
steps need to be carried out for attaining the radiated
acoustic field. Here, different approaches are addressed
for extracting aeroacoustic sources from the incompress-
ible flow field and computing their radiated sound pres-
sure field.

3.1 Aeroacoustic sources

3.1.1 Lighthill’s analogy

Lighthill’s acoustic analogy [3] is written for the far field
radiated sound pressure p as:

1

c20

∂2p

∂t2
−∇2p =

∂2Tij
∂xi∂xj

(sum w.r.t. i, j), (3)

where Tij is the Lighthill tensor, which, in the case of low
Mach numbers, can be calculated from the incompressible
flow velocity field:

Tij ≈ ρ0uiuj . (4)

It is useful to introduce the frequency domain version
of Eqn. (3) with p = Re

{
p̂ejΩt

}
as

∇2p̂+ k2p̂ = − ∂2T̂ij
∂xi∂xj

, (5)

with k = Ω/c0 denoting the wave number.

3.1.2 Perturbed convective wave equation

The other wave equation considered here is the perturbed
convective wave equation (PCWE) [4, 5], which is a re-
formulation of the APE-2 system of equations [6]:

1

c20

D2ψa

Dt2
−∇2ψa = − 1

ρ0c20

Dpic
Dt

, (6)

where the acoustical velocity potential ψa was introduced
using the definition va = −∇ψa, with va denoting the

acoustical particle velocity. In Eqn. (6) the total time
derivative D/Dt = ∂/∂t+ v · ∇ is seen.

One advantage of the PCWE is that it can take the ef-
fect of mean flow in the propagation domain into account.
The other difference compared to Eqn. (3) is that the for-
mulation utilizes the pressure field of the incompressible
simulation pic for the source terms.

3.2 Propagation

Here, we consider first a numerical convolution approach
for computing the far field radiated pressure in the fre-
quency domain. Moving to the frequency domain is jus-
tified by the fact that the convolution by the 2D Green’s
function is cumbersome in the time domain. Furthermore,
the time-periodicity of the vortex pair problem makes the
use of the frequency domain convenient.

The Green’s function G is defined by the relation

∇2G(x,x0) + k2G(x,x0) = −δ(x− x0), (7)

with δ denoting the Dirac delta distribution. If the
Lighthill tensor is known in each point of the domain V ,
the sound pressure field is attained as a convolution:

p̂(x) =

∫
V

G(x,x0)
∂2T̂ij(x0)

∂xi∂xj
dx0. (8)

The derivatives on the right hand side can be rearranged
to the Green’s function by means of applying integration
by parts twice. As the domain is unbounded in our case,
the arising boundary terms vanish and the following result
is found:

p̂(x) =

∫
V

∂2G(x− x0)

∂xi∂xj
T̂ij(x0) dx0. (9)

Since the Green’s function is a less abruptly changing
function than the Lighthill tensor itself (rc, r0 ≪ λ), shift-
ing the derivative is expected to allow a less fine spatial
discretization of V and hence a reduction of the computa-
tional effort.

The flow pressure field pic can also be used as source
of the calculation, however, in this case the computation
includes the total derivative. In the low Mach number
limit, the simplification D/Dt ≈ ∂/∂t can be applied for
the wave propagation, and making use of the Euler equa-
tion ∇p̂ = −jΩρ0va, the sound pressure in the frequency
domain is found as:

p̂(x) = −
∫
V

G(x− x0)
jΩ

c20
q̂(x0) dx0, (10)

3241



10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

where q̂ = F {Dpic/Dt} is the frequency domain repre-
sentation of the source term.

4. CONVERGENCE ANALYSIS

The convergence of the convolution integral strategy is
tested in this section. The sole numerical approximation in
this case is the discretized evaluation of the convolutions
in Eqn. (8) and (9), where only the source region is dis-
cretized. Thus, possible errors due to the interpolation of
the source terms, or numerical dispersion in the propoga-
tion domain are avoided. Hence, if a converged result is
attained using this method, it can be used later as a refer-
ence solution to which FEM results can be compared.

The common parameters of the simulation cases are
the following: circulation Γ = 1.005321m2/s, angular
frequency Ω0 = 0.08 rad/s, distance between origin and
center of the vortex r0 = 1m, equilibrium density of the
fluid ρ0 = 1kg/m3. The core radius rc, the speed of
sound c0 and the truncation radiusR of the infinite domain
V are varied in different tests.

4.1 Integration strategy

Making use of the periodic motion of the vortex pair, the
periodicity of the source term q [with q denoting a gen-
eral source term in Eqn. (8), (9), or (10)] is exploited, and
the size of the integration domain can be significantly re-
duced. Integration over a circular area can then be per-
formed by evaluating the source terms only over a slice of
the domain Vsl : 0 ≤ r ≤ R, 0 ≤ θ ≤ π/Nsl, where Nsl

is the number of slices, taken conveniently as an integer
power of 2. The total integration domain consists of 2Nsl

slices. Numbering these slices in the positive (counter-
clockwise) direction, we find for the n-th slice that

q(n)
(
x(n), t

)
= q(0)

(
x(0), t− πn

Ω0Nsl

)
, (11)

where x(0) is a spatial location in the first slice (i.e., the
slice over which the actual convolution is performed),
x(n) is the same coordinate rotated by an angle of nπ/Nsl

around the origin. The upper indices in parentheses de-
note the number of the slice. The time delay tn =
πn/(Ω0Nsl), or an equivalent phase shift in the frequency
domain, results from the angle and the angular velocity of
the rotation of the vortex pair.

Finally, the slice Vsl is subdivided into integration
subdomains, and the base points of a Gaussian quadrature
in the polar coordinate system are used in each subdomain

Figure 3. Numerical integration strategy

for the discretization of the convolution integral. As also
illustrated in Fig. 3, the finest spatial resolution is applied
in the region r ≈ r0.

4.2 Radiation by the spectral components

In the frequency domain, an interesting phenomenon can
be discovered when examining the excitation and the
pressure response. Fig. 4(a) shows the spectrum of the
Lighthill source term in Eqn. (3) at the radius r = 1.25r0.
It can be seen that we have the spectrum of a smooth
periodic, but non-harmonic function, since the first few
components take on a non-zero value and a decay is ob-
served as the frequency increases. However, as it is seen
in Fig. 4(b) only the first component (angular frequency
2Ω0) radiates into the far field, as also predicted by the an-
alytical formula (1). While excitation by higher frequency
components cancel out due to the geometrical symmetry,
the presence of the higher components must not be ne-
glected when a finite element formulation of the sound ra-
diation is considered. The maximum allowable frequency
for which the largest element size is still smaller than λ/10
is shown as the dashed vertical line in Fig. 4(a) for the FE
mesh used later in this study. While in a frequency do-
main simulation the frequency content of the aeroacoustic
source terms is easily controlled, the extended frequency
bandwidth of the source has to be taken into account if the
computation is performed in the time domain.

4.3 Convergence results

We first discuss the variation of the minimal spatial res-
olution required with different choices of the core radius
rc. In this case the fixed parameteres are: R = 300r0,
c0 = 8m/s, i.e., Ma = 0.01. The effect of changing
the size of the integration subdomains is shown in Fig. 5.
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(a)

(b)

Figure 4. (a) Spectrum of the excitation source term
(b) Sound pressure radiated by the first 3 harmonic
components of the excitation

The dash-dotted curves are a continuation of the results,
where convergence was already attained using smaller res-
olutions. Convergence was reached in all cases, and the
two strategies of Eqn. (8) and (9) converge to the same
relative error compared to the analytical solution.

The error caused by the core radius rc is also inter-
esting to observe in Fig. 5. As rc increases, the error
limit increases as well, from 0.4% (rc = 0.02m) to 9.6%
(rc = 0.20m). On the other hand, it can also be observed
that with increasing rc convergence is achieved with lower
spatial resolutions in all cases, as a result of the Scully
vortex model smoothing out the steeper spatial variations
of the Lighthill source term at higher rc values. Shifting
the spatial derivatives to the Green’s function resulted in
reaching convergence with 2.5 to 4 times smaller resolu-
tions, which trend was expected as explained above.

The effect of changing the speed of sound c0 and the
truncation limitR is depicted in Fig. 6. Here, rc = 0.02m
is used, and the spatial resolution is chosen at the conver-
gence limit observed above (125 domains /r0). The fig-

Figure 5. Effect of the element size and core ra-
dius on the results of the numerical convolution with
different rc values. Solid lines and “x” markers:
Eqn. (8). Dashed lines and circle markers: Eqn. (9).

ure shows the results of two methods in a similar way as
Fig. 5. It can be seen that as the Mach number increases
(i.e., c0 decreases), the limit error increases gradually.

The effect of the truncation limit R on the results is
also interesting to observe in Fig. 6. As the Mach num-
ber decreases, a higher R is required to arrive at the limit
of convergence: while for Ma = 0.08 the limit is near
R/r0 = 30, at Ma = 0.001, R/r0 ≈ 500 is required
to reach convergence. While the two methods converge
to the same result, the shape of the curves for the trun-
cation limit R is apparently completely different for the
two methods. When the derivative is on the Lighthill ten-
sor [Eqn. (8)], the curve approximates the converged value
from above (i.e., the error decreases monotonically asR is
increased), while in the case where the spatial derivatives
are shifted to the Green’s function [Eqn. (9)], we observe
a sudden drop in the error as R is increased, and then the
converged value is reached from below.

The implications of the results on the truncation limit
are also worth discussing. First, the convergence limit
tells the minimal size of the flow mesh that is necessary
to achieve the minimal error. Second, it is noticed that the
truncation size at the convergence limit becomes compa-
rable to the wavelength, and the assumption of a compact
source (R≪ λ) no longer holds if the whole source region
is considered. While in case of singular potential vortices,
the vortices represent point sources, the effective source
size increases dramatically by the desingularization.
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Figure 6. Effect of the truncation limit R at different
Mach numbers Ma. Solid lines: Eqn. (8). Dashed
lines: Eqn. (9).

Finally, it has to be highlighted that the final error has
a similar shape in all converged cases: the phase of the
radiated sound pressure matches exactly that of the ana-
lytical solution, while the magnitude is smaller than the
analytical one by a constant factor, i.e., independent of
the distance. The decrease of the magnitude is expected,
since the desingularization (2) decreases the velocity. As
the only approximation made here is the numerical evalua-
tion of the convolution integral, the converged results can
serve as a reference when more involved computations,
such as the FEM, are considered.

5. FINITE ELEMENT SIMULATION

5.1 FE methodology

We consider first the Helmholtz equation with Lighthill
sources, i.e., Eqn. (5). The Lighthill sources are approxi-
mated using the finite element shape functions ϕk(x) as

T̂ij(x) ≈
n∑

k=1

ϕk(x)T̂ijk. (12)

In the presented example, linear isogeometric elements
are used. By applying the standard Galerkin method on
the weak form, a spatial derivative is shifted from the
Lighthill tensor onto the shape functions. The arising
boundary term is cancelled anew [7]. For the PCWE
source terms, we apply a similar approximation:

q̂(x) ≈
n∑

k=1

ϕk(x)q̂k. (13)

Then, the standard Galerkin formulation is utilized.
The parameters for the reference case are chosen as

c0 = 1m/s (λ = 39.3m) and rc = 0.1m, and the other
parameters are the same as in Section 4. First, a flow mesh
is generated, which has a rectangular shape. In the center
6 × 6m area of the mesh the element size is uniformly
lmin = 0.02m, while away from the center, the size of
the elements increases gradually up to lmax = 0.5m, at
r = 50m, which is half the edge length of the total flow
domain. The velocity field and the Lighthill tensor field
are evaluated on a fluid mesh using (2) and (4) and the
latter is transformed into the frequency domain. In case
of the PCWE, the method described in [8] is utilzed for
computing pic from the velocity and complex flow poten-
tial fields.

The acoustical mesh also has a rectangular shape, and
has a total size of 400 × 400m, with the element sizes
increasing gradually from 0.08 to 1.0m towards the edge.
For emulating free field radiation conditions, the PML for-
mulation presented in [9] is utilized and a layer of 20m
thickness is attached to the propagation domain. Con-
servative interpolation [7, 10] is utilized for interpolating
the discretized source terms from the flow mesh onto the
acoustical mesh.

The matrix equation resulting from the discretization
of the weak forms of the governing equations reads as(

Ka + jΩCa − Ω2Ma

)
p = Apff , (14)

where Ka, Ma, and Ca are the acoustical stiffness, mass,
and damping matrices, ff is the forcing vector on the flow
mesh, resulting from the Lighthill or PCWE sources, and
Ap is an auxiliary sparse matrix of the conservative inter-
polation. Eqn. (14) is solved for the pressure unknowns
represented by the vector p. The inverse Fourier transform
can be applied for finding the pressure field at an arbitrary
time instance in the steady state, as shown in Fig. 7. The
quadrupole field is perfectly reproduced by the FEM, and
no spurious reflections are observed from the PML inter-
face. Overall, a very good agreement with the analytical
solution is observed in both cases.

5.2 Evaluation of the differences between the
simulation methods

It is worth noting again that we can only expect the model
to approximate the converged integration result, since the
FEM introduces new approximations in addition to the
desingularization, which stem from several steps. Be-
cause the flow domain being already discretized (a flow
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Figure 7. Comparision of analytical and FEM solutions in the whole simulation domain

mesh was used instead of the integration subdomains of
the convolution), refining the acoustical mesh can only in-
crease the accuracy up to a certain limit. The interpolation
of the aeroacoustic source terms can also introduce an er-
ror. Contrary to the numerical convolution by the Green’s
function, the propagation phase is also subject to numeri-
cal dispersion in the FEM. Finally, an artificial truncation
of the simulation domain is necessary for imitating free
field radiation conditions.

With these considerations in mind, we can observe
the error given by the methods in Fig. 8. In all cases, the
error is evaluated on the black evaluation line shown pre-
viously in Fig. 2. While there are many possible sources
of error in the FE solution, the final result only differs by
a minimal extent from the converged convolution result
(dotted curve in Fig. 8), which highlights that the error
introduced by the desingularization is dominant. Simi-
lar to the cases discussed in Section 4, the magnitude of
the analytical solution is underestimated by the FEM as
well. It is also observed that the FEM results are almost
perfectly aligned in phase with both the analytical and the
converged numerical convolution results, showing that the
chosen discretization does not introduce a significant nu-
merical dispersion error.

While the near field is not visible Fig. 8, it is interest-
ing to observe in Fig. 7, that in the near field of the vor-
tex pair (for r < λ/2) remarkable differences are present
between the Lighthill and PCWE FEM results. As both
techniques as well as the analytical formula rely on the far

Figure 8. Comparision of different simulation meth-
ods on the same evaluation line

field approximation, the near field cannot be expected to
be reproduced by neither methods, and it should be ex-
cluded from the evaluation of the relative error.

6. CONCLUSION

In this paper we dealt with one of the common valida-
tion arrangements in flow acoustics, the co-rotating vor-
tex pair. The analytical solution for the far field radiated
pressure was compared to numerical convolution of the
source terms resulting from desingularized vortices by the
Green’s function in the frequency domain. The parame-

3245



10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

ters affecting the convergence of the computational pro-
cedure were examined and the minimal achievable errors
were determined. By examining the effect of the trunca-
tion radius of the integration domain, it was found that the
source region of the desingularized vortices can no longer
be considered as compact. The latter result also explains
the higher deviation from the analytical solution at slightly
greater Mach numbers (Ma ≈ 0.1). Based on the con-
vergence results of the convolution, a finite element test
case was created and the results of the FE simulation were
compared with both the analytical and converged numeri-
cal solutions using both Lighhill sources and the perturbed
convective wave equation. Despite the fact that errors may
stem from several steps of the finite element procedure,
the FE solution approximated the converged numerical
convolution very well. This study shows that a relatively
simple validation problem like the vortex pair may already
suffer from various sources of errors, which renders the
reconsideration of validation cases worthwhile.
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