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ABSTRACT
Periodic structures present wave phenomena that can be
used as wave attenuation in certain frequency bands. Usu-
ally, the periodic structures are divided into metamate-
rials (locally resonant structures) and phononic crystals.
More recently, topological metamaterials have emerged as
a possible application to overcome conventional metama-
terials and phononic crystals. These structures can sup-
port interface states by combining two periodic structures
with distinct topological invariants. The wave propagation
path (or localization) is robust against variability and de-
fects, which is the so-called topological protection. In the
current study, we investigate the robustness of interface
topological modes in a rod structure and show that this ro-
bustness has different effects on the mode shapes and the
natural frequency of the topological and defect modes.

Keywords: Topological metamaterial, Variability, Ro-
bustness, Vibration localization

1. INTRODUCTION

The use of topological invariants to group physical ob-
jects with substantial similarities in groups that differ from
the other groups began in 1980’s. The topological invari-
ant is the parameter used to classify the objects inside
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the groups. These mathematical tools applied to physics
made possible the development of superconductors and
powerful insulators, as well as the realization of topologi-
cal phenomena in classical mechanical systems leading to
more efficient energy harvesters [1–3]. These topological
phenomena are considered robust against variability and
smooth defects, i.e., the defect or variability needs to be
severe enough to close and reopen the band gap, making
the transition to a different topological invariant. Thus, the
objective of the present study is to verify the robustness of
topological modes, namely the interface edge modes.

Figure 1: Unit cell made of two segments of length
LA and diameter DA and a segment with length LB

and diameter DB in the center. The structure is made
of nylon with mass density (ρ) of 1,200 kg/m3 and
Young’s modulus (E) of 4 GPa.

2. THE DETERMINISTIC MODELS

The spectral element method (SEM) and the finite element
method (FEM) [4, 5] are used in the current investigation
for modeling the periodic rod structure. FEM allows the
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computation of the natural frequencies and mode shapes
after checking mesh refinement convergence [6]. On the
other hand, the dispersion diagrams and the topological
invariant, namely the Zak phase, are computed using the
transfer matrix method together with the SEM model [7].
The unit cell of the rod phononic crystal is shown in Fig. 1
and consists of a thicker segment in the center, of length
LB and diameter DB , with two symmetrically placed seg-
ments at the edges, of length LA and diameter DA. The
parameter ∆L = LA−LB

2 , with −L/2 ≤ ∆L ≤ L/2 de-
fines a topological transition point where a band gap is
closed on the reciprocal space [3, 8].

The proposed structure is first assumed without geom-
etry and mechanical properties variability. FEM was used
to compute the natural frequencies and mode shapes and
SEM was used to compute the dispersion diagrams and
the wave modes that were used for the Zak phase compu-
tation.

The Zak phase is computed using the wave modes in a
discrete way in frequency and space. The wave modes can
be defined as un,kj ,xt

associated with the nth pass band
and jth wavenumber and at spatial position xt [9]. Thus,
the Zak phase can be computed with [8]

ΘZak
n = −Im


N∑
j=1

ln

[
S∑

t=1

u∗
n,kj ,xt

un,kj+1,xt
∆x

] ,

(1)
where N is the discretization size in the IBZ (wavenumber
domain) and S is the discretization size in the unit cell
(spatial domain).

Fig. 2 can be obtained by plotting the absolute value
of the imaginary part of the wavenumber for different val-
ues of ∆L. The red and green lines indicate where the Zak
phase equals π or 0 respectively for the passbands above
the colored line.

Assuming L = 1, DA = 10 and DB = 20, the forced
response in Fig. 3 is obtained from excitation and mea-
surement at the center (interface) of a metastructure con-
sisting of 10 unit cells with ∆L = −0.41 and 10 unit
cells with ∆L = 0.41. It is possible to notice a topolog-
ical mode in the second band gap as it was designed to
be. The shape of this mode with a natural frequency of
1,799.70 Hz is shown in Fig. 4.

In order to create a metastructure with a defect mode,
an increase of 78% in the diameter of the segment (33.33
mm) at the center of the metastructure, which consists of
20 unit cells with ∆L = 0.41, was made. As can be seen
in the forced response, shown in Fig. 5, a defect mode

Figure 2: Imaginary part of the wavenumber over
the frequency range and different values of the geo-
metrical parameter ∆L (length difference). Red and
green lines indicate that the pass band over the line
has a Zak phase of π and 0, respectively.

shows up at 1,933.4 Hz. The corresponding mode shape
caused by the defect is visualized in Fig. 6.

3. STOCHASTIC MODELS

Next, the mechanical properties ρ and E were assumed as
stochastic fields, as done in [10], using a correlation length
equal half of the unit cell length. The stochastic field is
assumed as a Gaussian process with a mean equal to the
assumed deterministic values and a correlation of varia-
tion equal to 2. A Monte Carlo method with 300 samples
was used for the stochastic analyses.

When analyzing the variations in the natural fre-
quency and mode shape of the proposed topological mode
under the proposed variability, some metrics need to be
defined. The coefficient of variation and the correlation
coefficient are used as metrics of variation for the wave
mode and natural frequency, respectively. The correlation
coefficient values were 99.97% and 98.14% respectively.
Some samples of the stochastic mode shapes are shown
in Fig. 8 and Fig. 10 for the stochastic topological mode
and defect mode, respectively. However, when analyzing
the coefficient of variation of the stochastic natural fre-
quency - six samples of the forced responses are shown
Fig. 7 and Fig. 9 -, the stochastic defect mode with a co-
efficient of variation of 0.0053 and standard deviation of
11.53 is more robust than the topological mode with a co-
efficient of variation of 0.0077 and standard deviation of
13.53.
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Figure 3: FRF with excitation and measurement at
the center of a metastructure, at the interface of two
crystals, one consisting of 10 unit cells with ∆L =
−0.41 and the other consisting of 10 unit cells with
∆L = 0.41.
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Figure 4: Mode shape corresponding to the peak in
Fig. 3 at 1,799.70 Hz, the natural frequency of the
topological mode.

4. CONCLUDING REMARKS

In the current research, using the Zak phase as a tool, we
designed and simulated two metastructures, one having
a topological mode and another having a defect mode.
Those two modes have close frequencies and the metas-
tructures were designed to be similar, except for the pres-
ence of the topological or defect modes. Under a small
variability of the mechanical properties, the topological
mode is more robust when considering the mode shape
whereas the defect mode is more robust when considering
the natural frequency of the mode.
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Figure 5: Forced response for excitation and mea-
surement at the center of a metastructure with a de-
fect made of 20 unit cells with ∆L = 0.41.
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Figure 6: Mode shape corresponding to the peak at
1.933.4 Hz in Fig. 5 (defect mode).
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Figure 7: Six samples of the stochastic forced re-
sponse for the metastructure with topological mode,
with a coefficient of variation of 0.0077 and a stan-
dard deviation of 13.96 Hz.
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Figure 8: Six samples of the simulated stochastic
topological mode shape. The correlation coefficient
between them is 99.97%.
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Figure 9: Six samples of the stochastic forced re-
sponse for the structure with defect mode, with a co-
efficient of variation of 0.0058 and a standard devia-
tion of 11.53 Hz.
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Figure 10: Six samples of the mode shapes of the
simulated stochastic defect mode. The correlation
coefficient between them is 98.14%.
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