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ABSTRACT

The simulation of spherical microphone arrays is com-
monly performed in the frequency domain using spheri-
cal harmonic representation of the spatial transfer func-
tions. Each modal spectrum is described by the spherical
Hankel function and its derivative. Although the resulting
simulation is accurate in the frequency domain, the corre-
sponding time-domain signal obtained by the inverse dis-
crete Fourier transform (IDFT) exhibits temporal aliasing
and smearing. Moreover, evaluating the spherical Hankel
functions at a larger number of frequencies can be a com-
putational bottleneck. In this paper, we propose a time-
domain approach, where each modal transfer function is
implemented as a parallel combination of IIR filters and
a single FIR filter. The poles of the IIR filters correspond
to the roots of the spherical Hankel functions’ derivatives,
which can be pre-computed for a given radius. The FIR
filter coefficients are obtained by the least-squares solu-
tion, where the squared spectrum errors are minimized at
control frequencies. While the number of poles are fixed
for each harmonic order, the FIR length is a free design
parameter, with which the simulation accuracy can be ad-
justed. The presented approach is compared numerically
with previously proposed time-domain methods and the
frequency-domain modeling.
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1. INTRODUCTION

Rigid spherical microphone arrays are widely used for
capturing sound fields [1–3]. Developing and evaluating
associated signal processing techniques (e.g. Ambisonic
encoding, beamforming, sound field analysis) often re-
quire numerical simulations of different configurations for
various capturing scenarios [4, 5]. There are several fac-
tors that have to be considered for an accurate and reli-
able simulation, e.g. accuracy in the frequency domain,
structure in the time domain, computational efficiency of
the modeling, and computational efficiency of the simu-
lation. Simulations in the frequency domain, for instance,
achieve high accuracy in the frequency domain, but hardly
meet the other three requirements.

The authors proposed a time-domain approach in [6],
where the acoustic impulse responses are modeled with
digital IIR filters. This method is inspired by earlier stud-
ies in array signal processing [7–10]. The filter coeffi-
cients are derived from an analytical representation of the
system function. In comparison to the frequency-domain
model, the computational complexity is reduced in both
modeling and implementation. The resulting impulse re-
sponses exhibit compact transients and are free of tem-
poral artifacts such as pre-ringing. One downside of the
time-domain approach, though, is that the accuracy in the
frequency domain is inferior. This is mainly attributed to
frequency-domain aliasing.

An improved time-domain model is presented in [11],
where the spectral aliasing is reduced by the band-limited
impulse invariance method [12]. An FIR filter is added
to the model in parallel to the IIR filters. The FIR fil-
ter is designed in such a way that it cancels the aliasing
produced by the IIR filters. The FIR coefficients are de-
rived analytically based on an ideally low-pass filtered im-
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Figure 1. Discrete-time model (z-domain) of the acoustic transmission from a point source at (rs, θs, φs) to a
receiver on a rigid sphere (R, θ, φ) [cf. (9)]. The modal spectra are implemented as digital filters Ân(z) for
n = 0, 1, . . . , N .

pulse response of the system function. This leads to a
closed-form expression described by the exponential in-
tegral function with an appropriate time-domain window-
ing. The FIR part slightly increases the computational
complexity, but the proposed time-domain model is still
more efficient than the frequency-domain approach.

In this paper, we introduce an extension of our model,
where a numerical method is employed. Instead of relying
on analytical representations, the least square solution is
used for the FIR filter design which minimizes the spectral
errors at predefined frequencies in the mean squared error
sense. The same coefficients are used for the IIR part, and
the overall filter structure remains unchanged. Therefore,
the computational complexity of the simulation itself does
not change. The new approach provides an alternative op-
tion for the time-domain model, where the error spectrum
can be shaped differently depending on the distribution of
the control frequencies.

The remainder of this paper is structured as follows.
Section 2 presents the Laplace-domain formulation of
the acoustic transfer function and reviews a recently in-
troduced time-domain design approach. The proposed
method is introduced in Sec. 3, describing the numerical
design of the FIR filter. Section 4 demonstrates the im-
provements by simulation results. The paper is then con-
cluded in Sec. 5.
Nomenclature Positions and directions are represented
with spherical coordinates (r, θ, φ), where r ≥ 0 de-
notes the radius in m, θ ∈ [0◦, 180◦] the colatitude, and
φ ∈ [0◦, 360◦) the azimuth. Angular frequency in rad/s
is denoted by ω = 2πf where f is the corresponding fre-
quency in Hz. For a given sampling frequency fs, the nor-
malized angular frequency is denoted by Ω = ω · Ts with

Ts = 1
fs

denoting the sampling interval in s. The time har-
monic term eiωt is omitted for brevity. The speed of sound
in m/s is denoted by c and the imaginary unit by i.

2. ANALYTICAL BAND LIMITED IMPULSE
INVARIANCE METHOD

This section reviews the time-domain modeling of spher-
ical microphone arrays presented in [6, 11]. We assume
that a point source, positioned at xs = (rs, θs, φs), emits
a spherical wave in a free field. The emitted sound field
is captured on a rigid sphere with radius R centered at
the origin. The captured sound field by a receiver at
x = (R, θ, φ) can be expanded in terms of spherical
modes as [13, Sec. 4.2]

S(x, ω) =

∞∑
n=0

2n+ 1

4π
Pn(cos Θs)

−hn(ωc rs)
ω
cR

2 · h′n(ωcR)
. (1)

The angular dependencies are described by the Legendre
polynomials Pn(cos Θs), where Θs denotes the angle be-
tween x and xs. The spectral and radial dependencies are
described by the spherical Hankel function of the second
kind hn(·) and the derivative with respect to its argument
h′n(·). In the considered time-harmonic convention (eiωt),
the latter represent the outgoing waves (radiation from the
point source and scattering by the sphere). The commonly
used superscript (·)(2) is omitted for brevity.

By exploiting the explicit formula of the spherical
Hankel functions [14, Eq. (10.49.7)], the rational part in
(1) can be expressed as

−hn(ωc rs)
ω
cR

2 · h′n(ωcR)
=

c

rsR
e−i

ω
c (R−rs)An(iω), (2)
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with An(iω) denoting the spectral component of each
mode,

An(iω) =

∑n
k=0 βn(k) · ( rs

c )k−n · (iω)k∑n+1
k=0 γn(k) · (Rc )k−n−1 · (iω)k

. (3)

The coefficients βn(k) and γn(k) are defined as

βn(k) =

{
(2n−k)!

(n−k)!k!2n−k k = 0, 1, . . . , n

0, otherwise
(4)

and

γn(k) =


βn+1(k)− n · βn(k), k = 0, 1, . . . , n

1, k = n+ 1

0, otherwise,
(5)

respectively [11].
The analytic continuation of (3) in the complex plane

yields the Laplace-domain representation of the system
function (s ∈ C),

An(s) =

∑n
k=0 βn(k) · ( rs

c )k−n · sk∑n+1
k=0 γn(k) · (Rc )k−n−1 · sk

. (6)

As discussed in [11], each modal transfer function is char-
acterized by n zeros and n + 1 poles, all of which are
distinct and lying on the left half of the complex plane.
Equation (6) thus can be expressed as a factorized form,

An(s) =

∏n−1
k=0(s− qn,k)∏n
k=0(s− pn,k)

, (7)

where qn,k denotes the kth zero and pn,k the kth pole of
the nth modal spectrum An(s). Alternatively, An(s) can
be formulated as a partial fraction expansion,

An(s) =

n∑
k=0

ρn,k
s− pn,k

, (8)

where ρn,k denotes the kth residue corresponding to pn,k.
The overall system function (Laplace domain) can be

rewritten by plugging (2) into (1) yields

S(x, s) =
c · e− rs−R

c s

4πrsR

∞∑
n=0

(2n+ 1)Pn(cos Θs)An(s).

(9)

Equation (9) consists of an overall amplitude scaling
c

4πrsR
, an overall delay e−

rs−R
c s, and a superposition of

the modal transfer functions An(s) weighted by the di-
rectional dependent parts Pn(cos Θs). The linear-phase
delay e−

rs−R
c s corresponds to the wave propagation from

the source to the nearest point on the sphere. The rela-
tive delays between the individual receivers are modeled
by An(s) which have nonlinear phase responses.

For a numerical simulation of the sound field on the
rigid sphere, the continuous-time system function (9) has
to be discretized [cf. Fig. 1]. The overall delay can be real-
ized with an integer-sample shift D =

[
rs−R
c Ts

]
where [·]

denotes the rounding operator, or with a fractional delay
filter [15] The latter might be desired if multiple sound
sources are considered and a high temporal resolution is
of importance. Note from Fig. 1 that the expansion (9) is
truncated to the N th order. The rule of thumb N ≥ ω

cR
is commonly used to determine the expansion order. The
modal transfer function An(s) is modeled by a discrete-
time system whose z-transform is denoted by Ân(z). The
linear time-invariant system is modeled by a digital fil-
ter which can be built either based on cascade (7) or par-
tial fraction expansion formulation (8). Bilinear trans-
form or matched z-transform can be used for the former,
and impulse invariance method for the latter. The re-
sulting discrete-time models typically exhibit spectral dis-
tortions due to frequency warping or frequency-domain
aliasing [6].

The frequency-domain accuracy of the discrete-time
model can be improved by using the band-limited im-
pulse invariance method [11, 12]. It is based on the paral-
lel model of continuous-time systems as described by (8).
Since the system is supposed to be causal, the correspond-
ing impulse response (inverse Laplace transform) is a sum
of right-sided complex exponential functions,

an(t) =

n∑
k=0

ρn,k · epn,k·tu(t), (10)

with u(t) denoting the Heaviside step function. The con-
ventional impulse invariance method [16, 17] is based on
time-domain sampling of the impulse response. The z-
transform of the time-domain sampling of (10) reads

Â(II)
n (z) =

n∑
k=0

ρn,kTs

2

1 + epn,kTsz−1

1− epn,kTsz−1
, (11)

where the superscript ‘II’ indicates the impulse invariance
method. While the temporal structure of the original im-
pulse response is well modeled by the decaying exponen-
tial functions, the spectrum typically exhibits aliasing dis-
tortions. In the band-limited impulse invariance method,
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Figure 2. Impulse response of a 2nd-order Butterworth low-pass filter (sampling frequency fs = 48 kHz,
cut-off frequency ωc = 2πfc with fc = 1

4fs, poles p{1,2} = ωc · e±i
3
4
π, residues ρ{1,2} = ωc√

2
· e∓iπ2 ). The

band-limited impulse response in the first subplot is an ideally low-passed filtered version of the full-band
impulse response shown in the second subplot. The third subplot depicts the difference between these two
impulse responses. A discrete-time implementation of the band-limited impulse response can be performed by
using the full-band part with an IIR filter and the residual with an FIR filter. The black circles indicate the
discrete-time samples at t = µTs,∀µ ∈ Z. The amplitudes are normalized by the cut-off frequency ωc and the
time axis by the sampling period Ts.

an FIR filter is combined in parallel with the delayed IIR
filter obtained in (11),

Â(ABL)
n (z) = z−M · Â(II)

n (z) +

L−1∑
l=0

d(ABL)
n,l z−l. (12)

The FIR coefficients d(ABL)
n,k are derived analytically based

on the inverse Laplace transform of a band-limited (|ω| <
πfs) version of (8). The analytical band-limitation is in-
dicated by the superscript ‘ABL’. As depicted in Fig. 2,
the resulting band-limited impulse response can be de-
composed into decaying complex exponential functions
and the corresponding residual. The complex exponential
functions are implemented as single-pole IIR filters by us-
ing the conventional impulse invariance method [cf. (11)].
IIR filters with complex conjugate poles are typically
combined (added) together and implemented as a biquad
filter. The residual is modeled by an FIR filter after trun-
cating and windowing it to a finite length L.

Note from (12) that a delay ofM ∈ [0, L−1] samples
is applied to the IIR part to ensure the causality of the sys-
tem. This can be implemented together with the overall
delay of rs−R

c [cf. (9)], e.g. by replacing z−(D−M) with
z−D in Fig. 1. The noncausal part of the modal impulse
response thus will not introduce additional group delay
to the overall system if M < rs−R

c fs. For M = 31,
fs = 48 kHz and c = 343 m/s, the distance from the
source to the nearest point on the sphere (rs − R) must

be greater than M ·c
fs
≈ 0.222 m, which is satisfied in most

configurations. Even if the source is closer than the min-
imum distance and the digital filter exhibits a group de-
lay that exceeds the wave propagation delay (source to the
nearest point on the sphere), the accuracy in the frequency
domain will not be affected except the additional linear-
phase delay.

3. NUMERICAL BAND-LIMITED IMPULSE
INVARIANCE METHOD

This paper proposes a new variation of the band-limited
impulse invariance method. Our objective is to find a
set of FIR coefficients dn,k that best approximate the de-
sired modal spectrum within the frequency range of inter-
est (|ω| < πfs),

e−MTssAn(s)
!
= z−M · Â(II)

n (z) +

L−1∑
l=0

dn,lz
−l. (13)

A delay ofM ·Ts seconds is applied to the continuous-time
transfer function (left-hand side) for time alignment with
the discrete-time system. Evaluating (13) for s = iω and
z = eiΩ = eiωTs (corresponding to the continuous-time
and discrete-time Fourier transforms) and rearranging the
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terms yield

L−1∑
l=0

dn,l e
i(M−l)ωTs = An(iω)− Â(II)

n (eiωTs). (14)

Therefore, the FIR part should model the residual, which
corresponds to the difference between the desired fre-
quency respoinse An(iω) and the frequency response of
the filter designed with the impulse invariance method
Â(II)
n (eiωTs) [cf. Fig. 2].

By selecting a set of control frequencies, ωk =
2πfk = ΩkTs for k = 0, 1, . . . ,K − 1, (14) can be ex-
pressed in a matrix form,

Wdn = an (15)

where

W =


eiMΩ0 ei(M−1)Ω0 . . . ei(M−L)Ω0

eiMΩ1 ei(M−1)Ω1 . . . ei(M−L)Ω1

...
...

. . .
...

eiMΩK−1 ei(M−1)ΩK−1 . . . ei(M−L)ΩK−1

 ,
(16)

dn =
[
dn,0 dn,1 . . . dn,L−1

]T
, (17)

and

an =


An(iω0)− Â(II)

n (eiω0Ts)

An(iω1)− Â(II)
n (eiω1Ts)

...
An(iωK−1)− Â(II)

n (eiωK−1Ts)

 . (18)

Since we are seeking for real FIR coefficients, it is suffi-
cient to specify the desired spectrum on the positive fre-
quency axis, i.e. ωk ∈ [0, πfs]. For K > L, the squared
error can be minimized by the least squares solution [18,
Eq. (7)],

d(NBL)
n = (<{W HW })−1<{W Han} (19)

where (·)H denotes the Hermitian transpose (conjugate
transpose) of a matrix, (·)−1 the inverse of a square ma-
trix, and <{·} takes the real part of the matrix entries. The
number of control frequencies and their distribution are
design parameters, the choice of which leads to different
FIR filters. The z-transform of the resulting filter is simi-
lar to (12) but with a different FIR part,

Â(NBL)
n (z) = z−M · Â(II)

n (z) +

L−1∑
l=0

d(NBL)
n,l z−l, (20)

where d(NBL)
n,l are the entries of d(NBL)

n obtained in (19). The
superscript ‘NBL’ indicates the numerical band limitation
performed in the current approach.

4. EVALUATION

In this section, the presented approach is used for the sim-
ulation of a sound field captured on a rigid sphere with
radius R = 0.042 m. A point source is assumed to emit
a discrete-time unit impulse δ[n]. The distance from the
point source to the center of the sphere rs is varied. The
simulations are performed at a typical audio sampling fre-
quency of 48 kHz. The speed of sound is assumed to be
c = 343 m/s.

Three different time-domain approaches are com-
pared.

• conventional impulse invariance method which
only uses IIR filters (II)

• analytical band-limited impulse invariance method,
where the FIR coefficients are derived analytically
(ABL)

• numerical band-limited impulse invariance
method, where the FIR coefficients are obtained by
least squares solution as described in Sec. 3 (NBL)

For the two band limitation approaches, the FIR length is
set toL = 15 and the non-causal length toM = 7, satisfy-
ing L = 2M + 1. Therefore, the FIR coefficients are cen-
tered at the first sample of the IIR filter responses. For the
ease of comparison, a delay of M samples is added to the
conventional impulse invariance method, z−M · Â(II)

n (z),
aligning it with the other filters in the time domain. In
the analytical approach, the FIR coefficients are obtained
by windowing the residual with a Kaiser-Bessel window
(parameter b = 8.6). In the numerical approach, the
control frequencies ωk are logarithmically distributed be-
tween 2 Hz to 24 kHz, which is heuristically chosen. The
number of control frequencies are set to K = 2 L = 30.
It is assumed that the overall delay rs−R

c is ideally sim-
ulated. We will only discuss the properties of the modal
transfer functions.

The modal frequency responses are examined by eval-
uating the z-transforms on the unit circle z = eiωTs ,

Ân(z)
∣∣
z=eiωTs . (21)

The modeling errors are defined as the deviations from the
original spectrum (complex-valued in general),

En(ω) = Ân(eiωTs)− e−iωMTs ·An(iω), (22)
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Figure 3. Frequency responses (top row) of simulated modal spectra (R = 0.042 m, rs = 1 m, n = 0, . . . , 10,
FIR filter length L = 15, non-causal part M = 7, fs = 48 kHz). The original modal spectra are shown in the
top-left, and for convenience, also in the bottom row in gray. The spectral errors are shown in the bottom row.
The markers × in the bottom-right plot indicate the control frequencies ωk used in the numerical design of the
FIR filters [cf. Sec. 3]. The control frequencies below the lower axis limit (42 Hz) are not shown.
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Figure 4. Normalized squared errors [cf. (23)] of the time-domain simulations (R = 0.042 m, rs =
0.1 m, 1 m, 10 m, n = 0, . . . , 16, FIR filter length L = 15, non-causal part M = 7, fs = 48 kHz).

where the delay of M samples is accounted for. The mag-
nitude spectra of the individual modes (n = 0, 1, . . . , 10)
and the corresponding spectral errors are depicted in
Fig. 3. The original spectra are shown for comparison
(top-left). The control frequencies are indicated by ‘×’
in the bottom-right. The limitation of the conventional
impulse invariance method is apparent, where the spectral
deviations increases for higher modal orders n. It can be
seen that the additional FIR parts effectively reduce the

errors, especially in the low frequencies. The error grad-
ually increases as the frequency approaches the Nyquist
limit fs

2 = 24 kHz. The numerical approach outperforms
the analytical design in a wide frequency range.

The spectral accuracy is further examined in terms of
the normalized squared error (NSE)

εn = 10 log10

 ∫ πfs

−πfs
|En(ω)|2 dω∫ πfs

−πfs
|An(iω)|2 dω

 . (23)
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Figure 5. Directional impulse responses of a point source captured on a rigid sphere (R = 0.042 m, rs = 1 m,
Θs ∈ [0◦, 360◦), FIR filter length L = 15, non-causal part M = 7, fs = 48 kHz).

It represents the energy ratio between the spectral errors
and the modal spectrum. The integrals in the numerator
and denominator are both approximated by summing the
squared magnitude spectrum at 216 equally spaced fre-
quencies (including the DC), using the discrete Fourier
transform (DFT) of the coefficients. Figure 4 shows the
NSE for varying source distances (rs = 0.1, 1, 10 m). As
expected, the conventional impulse invariance method ex-
hibits the highest errors in all cases. The improvement
achieved by the band-limited impulse invariance methods
in terms of NSE ranges from 6.7 dB to 48.8 dB. When
comparing the two band limitation approaches, the numer-
ical method outperforms the analytical method by 3.6 dB
on average. For these two methods, the NSE fluctuates
in the same fashion depending on the modal order n and
source distance rs.

Finally, the directional impulse responses on the rigid
sphere are computed by evaluating the modal expansion
(9) up to the 19th order (N = 19). The point source
is placed on the xy-plane at rs = 1 m distance. The
receivers are uniformly distributed on the equator, i.e.
Θs ∈ [0◦, 360◦). The impulse responses at these points
represent the directional impulse responses on the entire
sphere due to the axis-symmetry with respect to the direc-
tion of the point source xs [cf. (1)]. The impulse responses
are depicted in Fig. 5. For comparison, the result of a
frequency-domain simulation is also shown (left), where
the modal spectra are uniformly sampled at 216 frequen-
cies below the Nyquist limit and transformed into the time

domain by using the IDFT. The temporal smearing is ap-
parent, which is mainly due to the hard band limitation of
the modal spectrum. It is apparent that the time-domain
approaches are free of such artifacts. The diffraction
around the surface and the exponential decay are modeled
properly, which is not the case for the frequency-domain
approach. The non-causal length of the FIR filter is ex-
plicitly controlled by the design parameter M . The three
time-domain methods only differ around the arrival of the
first wavefront where the FIR filters are active by design
(for t ∈ [2.624 ms, 2.916 ms]). It can be seen that the an-
alytical and numerical methods lead to different temporal
structure within this interval. We observed that the differ-
ence is more pronounced at high modal orders (not shown
here). The distribution of the control frequency seems to
influence the transients, which has to be further investi-
gated in subsequent studies.

5. CONCLUSION

The directional impulse response on a rigid sphere is sim-
ulated with a high accuracy by using a modified version
of the band-limited impulse invariance method. The ana-
lytical derivation of the FIR filter coefficients is replaced
with a numerical method. For a given filter structure, the
proposed method has the potential of achieving higher
spectral accuracy. at the expense of increased computa-
tions only in the modeling stage. The proposed method
is a suitable choice if both spectral accuracy and compact
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temporal structure are of interest. It can be used in other
modal signal processing applications, such as distance
compensation for higher-order Ambisonics, radial filter-
ing in spherical microphone arrays, and radiation control
using compact spherical loudspeaker arrays.

The proposed numerical band-limited impulse invari-
ance method can be extended by including frequency-
dependent weights in the cost function. The spectral shape
of the modeling errors can be manipulated in this way.
The filter structure can be further optimized, e.g. by com-
bining the FIR filters belonging to different modal orders
into a single filter. Also, the overlap of the IIR and FIR
filters in the time domain can be removed by merging the
early part of the IIR into the FIR coefficients [19]. Such
practical considerations are beyond the scope of this pa-
per, and will be addressed in the future.
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