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ABSTRACT

A common problem that arises during modal testing is the
inability to directly excite degrees-of-freedom to obtain
frequency response functions (FRFs). It has been shown
previously that reliable reproduction of FRFs via indirect
excitation is difficult. This issue led to further investiga-
tion into the reconstruction of FRFs, with the most suc-
cessful method arising called the ’Round-trip’ method. In
one arrangement, the round-trip identity can be used to de-
termine the point receptance between two components, by
replacing local excitations with remote ones. This origi-
nal formulation requires three receptance terms to be mea-
sured. Depending on the combination two of these terms
represent either a velocity or force transmissibility, which
may be determined operationally. This alternative formu-
lation called the ’Operational Round-trip’ method, leaves
just one receptance term to be measured via modal testing.
Presented in the paper is an experimental example demon-
strating the application of the ORT method. Furthermore,
an investigation into the sensitivity of the approach when
either the velocity or force transmissibility is analysed.
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1. INTRODUCTION

Obtaining a full FRF matrix for a system is not always
easy in practical test situations. This can be due to: DoFs
not being easily accessible for direct excitation via modal
testing, the test structure only allowing for in-situ test-
ing (such as essential infrastructure that cannot be shut
down), and there being a large number of DoFs that excit-
ing every one becomes too time consuming. These issues
has further led research into reconstructing a full M × M
FRF matrix without needing to apply excitations at every
DoF (I.e. using only one column to synthesise the full
matrix). There are methods that have proven to be suc-
cessful as demonstrated by [1], [2], and [3], where they
require only a single excitation at one DoF and repeated
tests with varying mass loading. However this approach
is error prone if the FRFs have a very small change due to
the mass loading. [4] demonstrated theoretically that re-
construction was possible without repeated tests, but this
was proven to be impractical for systems with multiple
modes as the method implies that due to a certain fre-
quency range, some residual modes have to be added to
account for the effect of the modes outside the frequency
range. [5] builds upon Ewin’s work by presenting a similar
method that cancels the effects of all transducer masses.
Using a time-reversal technique, [6] set forth the Round-
trip method, based on the cavity equation [7]. FRF matrix
reconstruction is determined by applying excitations to a
’remote’ subset of DoFs either side of the ’target’ sub-
set of DoFs. This was the first method to determine an
FRF matrix without directly exciting the target DoFs. The
Round-trip identity (which is shown in the next section)
consists of mobility terms which are to be determined
via experimental modal testing. However this paper will
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present a novel version of the method called the Oper-
ational Round-trip (ORT) method, which seeks to make
the method applicable to output-only test cases. This is
particularly useful in civil engineering applications where
ambient excitation is preferred over artificial. The theory
behind ORT will be outlined in the next section, but in
essence the method uses the concept of generalised trans-
missibility to replace two of the three mobility terms in the
original round-trip formula. Transmissibilities are particu-
larly useful in this application for two main reasons: they
can be determined operationally, and when defined im-
plicitly using the blocked force/in-situ method [8] [9] they
can be quantified for a certain component or sub-structure
which is essential to replacing the mobility terms in the
round-trip formula. These transmissibilities are an ’invari-
ant’ property of a component as shown by [10], meaning
that a transmissibility calculated for a given component is
solely the property of that sub-structure. The theory be-
hind the round-trip method will be outlined in Section 2,
along with some definitions of transmissibilities. In the
latter part of the section the two definitions will be tied to-
gether in which the novel ORT method will be introduced.
In Section 3 an experiment investigating this method is
outlined and the results of the ORT method are displayed.
The method is validated by comparing the results against
a direct measurement, as well as the original round-trip
identity. Following this Section 4 discusses the results of
the experiment, as well as any points of the study that need
further investigation. Lastly, Section 5 presents the con-
cluding remarks of the study.

2. BACKGROUND THEORY

The round-trip method proposed by [11] constructs an
M×M FRF matrix at a coupling interface without need-
ing to excite the DoFs along it directly. This technique
replicates point FRFs at the interface by utilising subsets
of remote DoFs either side of the coupling interface that
are easier to excite. In the past there have been successful
attempts at reconstructing this matrix by measuring the re-
sponses at all M positions due to an excitation applied at a
single DoF. [6] briefly outlines how those previous meth-
ods are subject to error and presents a new method based
off the ”cavity equation” by [7]. Namely the method is
a generalised version of the equation where the time re-
versed response at a ’receiver’ sub-structure due to an ex-
citation at a ’source’ sub-structure, is expressed via convo-
lution of impulse responses at both points across a virtual
interface.

Figure 1. Diagram specifying the order and path of
the measured FRFs using the round-trip method.

Considering an arbitrary structure such as Fig.1, we
have two sub-domains A and B with multiple DoFs in a
given area of each, named as a and b. The interface c
is also a multi-point measurement location, dividing the
coupled structure into two sub-domains. Suppose A and
B are ’receiver’ and ’source’ sub-structures respectively.
Let’s take the excitations applied at the subset b, called
fb. Our definitions for the velocity experienced at subset
a and c are defined as,

va = YCab
fb (1)

vc = YCcb
fb (2)

As blocked forces are utilised at c, defining the velocity at
the interface requires taking the reaction force measured at
c which is due to excitations applied at b. I.e. the blocked
force at the interface −f̄ c, is equal to the applied force at
at b, denoted fb. This assumption implies the two forces
form the same velocity field in the receiver A. Thus the
velocity at the interface is defined as,

vc = −YCcc f̄c (3)

A definition must be made for the velocity in the receiver
sub-structure A with our blocked force definition,

va = −YCac
f̄c (4)

If we take Eq. 1 and 2, rearrange them for fb so the applied
force terms cancel we arrive at,
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vc = YCcb
Y−1

Cab
va (5)

A requirement of the round-trip is that the number of DoFs
in the subset of the receiver sub-structure should be more
than or equal to the number of DoFs in the source subset.
In this case where n represents the number of DoFs, na ≥
nb. Taking our definitions due to a blocked force made in
Eq. 3 and 4 and substituting them into Eq. 5, we have the
following definition,

YCcc
f̄c = YCcb

Y−1
Cab

YCac
f̄c (6)

The f̄c term cancels on both sides of Eq.6, and so the point
mobility round-trip identity is obtained,

YCcc = YCcb
Y−1

Cab
YCac (7)

Equally by reciprocity,

YCcc
= YT

Ccc
= YCca

Y−1
Cba

YT
Ccb

(8)

The reconstructed interface is denoted YCcc
, providing

the full mobility matrix of all DoFs at the interface c. This
calculation is due to three measured mobilities via modal
testing, denoted in Eq.7 as YCcb

, Y−1
Cab

, and YCac
. These

mobilities are represented by the arrows in Fig.1. It is
clear from this figure why the method is termed ’round-
trip’. Note that the mobility YCcc

is to be determined
for linear systems (as well as time invariant ones). Eq.8
represents the same equation that satisfies Maxwell-Betti
reciprocal theorem. With the first part of the foundational
theory behind the ORT method covered, the second part
is presented by introducing the concept of invariant gen-
eralised transmissibilities [10].

A transmissibility is defined as the ratio between two
like quantities. This is usually in terms of force, displace-
ment, or velocity.

−f̄1
...

−f̄N

 =

T
f
11 . . . T f

1M
...

. . .
...

T f
N1 . . . T f

NM


 f1

...
fM

 , T f
ij =

−f̄i
fj

∣∣∣∣∣
fk ̸=j=0

(9)
The force transmissibility T f

ij is defined as the relationship
between an applied force fj at the DoF j, and the block-
ing force −f̄i at the DoF i, whilst all other DoFs that are
excited are subject to a zero force constraint fk ̸=j = 0.
For Eq.9 the excitation and blocking force DoFs are part
of different sets (j ∈ M , i ∈ N ). If more than one block-
ing DoF is used then a constraint of vi∈N = 0 is applied

to those DoFs. Transmissibility in terms of velocity (also
sometimes referred to as the displacement transmissibil-
ity), is defined as T v

ij . It is introduced in Eq.10 that the
velocity vj found for DoF j, and velocity vi for DoF i are
shown to be related due to an applied force fk. All the
other DoFs (j ∈ N ) are rigidly constrained.

 v1
...

vM

 =

 T v
11 . . . T v

1N
...

. . .
...

T v
M1 . . . T v

MN


 v1

...
vN

 , T v
ij =

vi
vj

∣∣∣∣∣
vk ̸=j=0

·

(10)
Now that the velocity and force transmissibilities are de-
fined one can see there are similarities between them.
Both require rigidly constraining all blocking DoFs to
zero when measuring at or between distinct DoFs. This
is an important requirement, as the author explains why
in detail in another paper [12]. If the blocking (interface)
DoFs that separate a system into sub-structures have the
constraints applied, the sub-structure of interest will be
sufficiently characterised as an independent entity. Essen-
tially the target sub-structure has blocked the dynamic be-
haviour of any coupled sub-structures and are unable to in-
fluence it. Thus the transmissibility measured in the target
sub-structure is an invariant property of it. The similari-
ties between the two transmissibilities does not stop there.
In [13] it is shown that through a series of matrix oper-
ations the two are related. This relationship is expressed
in Eq.16. The following part of this section will show the
derivation of said equation.

Although force and velocity transmissibilities can be
expressed in terms of dynamic stiffness (impedance) due
to the equations of motion, the following derivations will
take form of mobilities and are in reference to Fig.2. The
reason for using mobilities is because direct measurement
of impedance is rather difficult and impractical in compar-
ison, requiring a constraint on all DoFs other than the one
with the applied excitation. Firstly let’s define the force
transmissibility in terms of mobilities. By equivalent field
theorem [8] [9], due to an applied force fa an identical ve-
locity response field along c can be made by applying the
negative blocked force at the interface,

vc = YCca
fa = −YCcc

f̄Ac
(11)

YCca is defined as the coupled transfer mobility between
the interface and remote subset of DoFs a, while YCcc is
the point interface mobility. By taking the inverse of point
interface mobility Y−1

Ccc
and pre-multiplying both sides of

Eq.11, the following definition is made,
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Figure 2. Diagram representing 2 sub-structures A
and B which contain subsets of DoFs a and b respec-
tively. These sub-structures are coupled at the inter-
face c where another subset of DoFs lie.

f̄Ac = Y−1
Ccc

YCca
fa (12)

The definition in Eq.12 relates the blocking force f̄Ac to an
external force fa. One should notice the similarity to Eq.9,
where it is obvious the transmissibility term represents the
mobility terms Y−1

Ccc
and YCca

.

Tf
Aca

= Y−1
Ccc

YCca (13)

The derivation behind the velocity transmissibility in
terms of mobilities starts with Eq.3, and Eq.4. Equating
these gives the following equation,

vc = YCcc
Y−1

Cac
va (14)

Similarly to Eq.12, Eq.14 relates the velocity at the inter-
face vc, to the velocity at the subset of DoFs in A, va.
Comparison to Eq.10 shows that the mobility terms YCcc

,
and Y−1

Cac
represent the velocity transmissibility.

Tv
Aca

= YCcc
Y−1

Cac
(15)

Comparison between Eq.13 and Eq.15 shows there is a
relationship between the two transmissibilities. By ap-
plying matrix inversions, [13] showed that the force and
velocity transmissibilities are related. This is expressed
by Eq.16, where the force transmissibility is equal to the

inverse transpose of the velocity transmissibility and vice
versa.

Tf
Aca

=

(
YCcc

Y−1
Cac

)−T

=

(
Tv

Aca

)−T

(16)

Collecting FRF data often requires human interven-
tion via experimental modal test, which can be rather time
consuming. This is especially the case where in some in-
stances where regions of a system are inaccessible to ex-
cite by modal hammer. The measurement of the mobility
terms in Eq.13 and Eq.15 may require some planning be-
forehand. Instead of defining these transmissibilities in
terms of mobility, one may do so via measured responses.
The remainder of this section will derive Tv

Aca
and Tf

Aca

in an output-only approach. This is not the same for FRFs
where the force and response inputs are known. All quan-
tities are in reference to Fig.2. For this method to work
the vibro-acoustic source should not be the sub-structure
selected. I.e. the transmissibility should be calculated for
a ’receiver’ subdomain. Firstly, N amount of linearly in-
dependent operational states must be measured. An oper-
ational state can be interpreted as an external force Fc.
These states represent a time window during an opera-
tional measurement. By ordering the external force vec-
tors for the columns of a matrix the following is given:

Fc =
[
f
(1)
c . . . f

(N)
c

]
(17)

The Eq.17 definition results in a corresponding velocity
matrix Vc at those DoFs. Redefining Eq.3 and Eq.4 re-
sults in the following equations,

Va = YCac
Fc (18)

and,

Vc = YCcc
Fc (19)

Applying the same rearrangement and substitution as
shown previously for in Eq.14 to the above equations 18
and 19 obtains the following,

Vc = YCccY
−1
Cac

Va (20)

From this it can be clearly deduced that the mobility terms
in Eq.20 represent the velocity transmissibility matrix in
terms of operational response,

Tv
Aca

= YCcc
Y−1

Cac
= VcV

−1
a (21)
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Implementing the inverse transpose relationship as shown
in Eq.16 obtains the force transmissibility in terms of op-
erational responses,

Tf
Aca

=

(
VcV

−1
a

)−T

= V−T
c VT

a (22)

A means of applying operationally determined trans-
missibilities to the round-trip equations Eq.7 and Eq.8 will
now be detailed. Firstly taking Eq.7 and applying a post-
multiplication matrix operation of Y−1

Cac
to both sides re-

sults in Eq.23.

YCccY
−1
Cac

= YCcb
Y−1

Cab
(23)

As seen before the left hand side of this equation is de-
fined as velocity transmissibility. A small side note should
be made that this equation indicates another mobility defi-
nition of the transmissibility Tv

Aca
. It can be said that this

definition also equals the output-only definition, which
will be integrated into the round-trip equation.

YCcb
Y−1

Cab
= VcV

−1
a (24)

Inserting the definition made in Eq.24 into the round-trip
Eq.7, or by rearranging Eq.15, sets forth the transmissibil-
ity approach of the method.

YCcc
= VcV

−1
a YCac

= Tv
Aca

YCac
(25)

As well as there being a velocity transmissibility applica-
tion, there is also a means of applying the force transmis-
sibility to the round-trip method. Therefore taking Eq.24
and applying an inverse transpose matrix operation, we
have another mobility definition for the force transmissi-
bility,

Tf
Aca

= Y−1
Ccc

YCca
= Y−1

Cbc
YCba

= V−T
c VT

a (26)

In order for the force transmissibility to be applied to
the round-trip equation, an inverse operation needs to be
made.

(Tf
Aca

)−1 = V−T
a VT

c (27)

The inverse force transmissibility definition in Eq.27 is
seen in the transposed round-trip Eq.8. Thus the force
transmissibility application to the round-trip method is de-
fined as,

YCcc
= YCca

V−T
a VT

c = YCca
(Tf

Aca
)−1 (28)

The definitions in Eq.25 and Eq.28 are a useful means
of applying the round-trip when the mobility terms cannot
be measured. Eq.25 only requires one FRF measurement
to obtain the mobility YCac

and an operational measure-
ment of the velocity transmissibility. The YCca

term re-
quires excitation at the interface, but applying the trans-
pose of this will allow one to apply the excitation at the
remote DoF a instead. Modal hammer excitations that are
applied to a remote set of DoFs are often more desirable
as these DoFs will be positioned for accessibility.

3. RESULTS

A similar system to Fig.2 was constructed, where the com-
ponent A is a steel beam resiliently coupled to B which is
a large hard acrylic plate.

Figure 3. 2D diagram of beam-isolator-plate test.
Above illustration is a side-on view, while the one
below is a top-down view.

In this experiment two rounds of tests were conducted
where the ’source’ beam was interchanged, in order to
show that the transmissibility term in the ORT method is
indeed invariant and thus the point mobility determined
is representative of that particular system when compared
to a direct measurement. Dimensions of Beam 1 and 2
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are 56x4x1cm and 44x4x1cm respectively. Instead of a
shaker, an impact hammer was used to apply excitations
within the source component A. The hammer was con-
stantly exciting a particular point for 20 seconds, where
each time window is taken at every 1 second. The points
on the source were excited at the exact same locations dur-
ing the FRF measurements. Firstly, we compare the origi-
nal round-trip formulation of point mobility against the di-
rectly measured point mobility at the interface, presented
in Fig.4. For this system, Fig.4 shows the original round-
trip formulation accurately representing the point mobility
at the interface up till 3 kHz, where a significant increase
in artefacts and noise can be observed.

Figure 4. YCcc due to beam 1: Round-trip vs. direct
measurement

Fig.5 compares the ORT method using the velocity trans-
missibility, to the direct measurement. Similarly to Fig.4,
this version of the ORT method accurately follows the di-
rect measurement, albeit with more noise and artefacts. It
should be noted that no regularisation techniques were ap-
plied to the ORT result. A study on the use of regularisa-
tion to the ORT method will be presented in a future paper.
In Fig.6 the ORT formula that include the force transmis-
sibility also shows an accurate representation when com-
pared to the direct measurement. This version shows less
noise than the velocity transmissibility application, all the
while still showing artefacts. To prove that the transmis-
sibility term in the ORT formula is an invariant property
of the receiver sub-structure B, Fig.7 displays the veloc-
ity transmissibility version of the ORT method for when

Figure 5. YCcc due to beam 1: Tv
Bcb

ORT vs. direct
measurement

source ’Beam 2’ is coupled to the system. It is clear
from Fig.7 that the ORT formulation accounts for the new
source component, thus the point mobility determined is
representative of the new system. The increased noise and
artefacts are visible similarly to the source ’Beam 1’ sce-
nario in Fig.5.

Figure 6. YCcc due to beam 1: Tf
Bcb

ORT vs. direct
measurement
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Figure 7. YCcc due to beam 2: Tv
Bcb

ORT vs. direct
measurement

4. DISCUSSION

Overall this study has shown there is good agreement be-
tween the operational round-trip method and their directly
measured point mobility counterparts. While artefacts
were present in both transmissibility cases (and noise in
the velocity transmissibility ORT), they both followed the
trend of the direct measurement with good accuracy. The
reasoning for the force transmissibility ORT not includ-
ing as much noise as the velocity transmissibility ORT is
not fully understood yet. This could be due to the trans-
missibilities being applied differently to the ORT formula
(I.e. force transmissibility is inverted when the velocity
transmissibility is not). This is a point of investigation
for a future study. While the ORT method has proven to
be accurate in this study, the original round-trip method
is slightly more precise. One must take into account that
small reduction in precision of the ORT method brings
a large benefit of it being almost completely operational,
leaving only one impact hammer measurement instead of
three. As part of a future study the ORT method will be
compared to the original round-trip when regularisation
is applied. The study will seek to show what regularisa-
tion techniques will aid the ORT in reducing noise and
artefacts, so that it resembles the ’cleaner’ nature of the
original round-trip method.

5. CONCLUSIONS

• Increase in noise and artefacts for the ORT formula
Eq.25.

• Noise not as prominent for the ORT formula Eq.28,
but still an increase in artefacts is observed.

• Both versions of the ORT formula show an accu-
rate depiction of the point mobility at the interface,
albeit with slightly less precision compared to the
original round-trip method. Nevertheless, the slight
reduction in precision comes with a large added
benefit of having a nearly completely operational
measurement.

• Further investigation is needed on the application
of regularisation techniques to ORT method.
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